首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3–12.8 g salt/l), highly alkaline (pH 8.9–10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from  Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, “Candidatus Nitrospira alkalitolerans”, revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. “Ca. Nitrospira alkalitolerans” also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.Subject terms: Environmental microbiology, Microbial ecology  相似文献   

2.
Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) are key players in global nitrogen and carbon cycling. Members of the phylum Nitrospinae are the most abundant, known NOB in the oceans. To date, only two closely affiliated Nitrospinae species have been isolated, which are only distantly related to the environmentally abundant uncultured Nitrospinae clades. Here, we applied live cell sorting, activity screening, and subcultivation on marine nitrite-oxidizing enrichments to obtain novel marine Nitrospinae. Two binary cultures were obtained, each containing one Nitrospinae strain and one alphaproteobacterial heterotroph. The Nitrospinae strains represent two new genera, and one strain is more closely related to environmentally abundant Nitrospinae than previously cultured NOB. With an apparent half-saturation constant of 8.7 ± 2.5 µM, this strain has the highest affinity for nitrite among characterized marine NOB, while the other strain (16.2 ± 1.6 µM) and Nitrospina gracilis (20.1 ± 2.1 µM) displayed slightly lower nitrite affinities. The new strains and N. gracilis share core metabolic pathways for nitrite oxidation and CO2 fixation but differ remarkably in their genomic repertoires of terminal oxidases, use of organic N sources, alternative energy metabolisms, osmotic stress and phage defense. The new strains, tentatively named “Candidatus Nitrohelix vancouverensis” and “Candidatus Nitronauta litoralis”, shed light on the niche differentiation and potential ecological roles of Nitrospinae.Subject terms: Water microbiology, Microbial ecology, Biogeochemistry  相似文献   

3.
Chemolithoautotrophic nitrite-oxidising bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the canonical nitrite oxidiser Nitrospira moscoviensis oxidises hydrogen (H2) below atmospheric levels using a high-affinity group 2a nickel-iron hydrogenase [Km(app) = 32 nM]. Atmospheric H2 oxidation occurred under both nitrite-replete and nitrite-deplete conditions, suggesting low-potential electrons derived from H2 oxidation promote nitrite-dependent growth and enable survival during nitrite limitation. Proteomic analyses confirmed the hydrogenase was abundant under both conditions and indicated extensive metabolic changes occur to reduce energy expenditure and growth under nitrite-deplete conditions. Thermodynamic modelling revealed that H2 oxidation theoretically generates higher power yield than nitrite oxidation at low substrate concentrations and significantly contributes to growth at elevated nitrite concentrations. Collectively, this study suggests atmospheric H2 oxidation enhances the growth and survival of NOB amid variability of nitrite supply, extends the phenomenon of atmospheric H2 oxidation to an eighth phylum (Nitrospirota), and reveals unexpected new links between the global hydrogen and nitrogen cycles. Long classified as obligate nitrite oxidisers, our findings suggest H2 may primarily support growth and survival of certain NOB in natural environments.Subject terms: Environmental microbiology, Microbial ecology, Metabolism  相似文献   

4.
The genus Nitrospira is the most widespread group of nitrite-oxidizing bacteria and thrives in diverse natural and engineered ecosystems. Nitrospira marina Nb-295T was isolated from the ocean over 30 years ago; however, its genome has not yet been analyzed. Here, we investigated the metabolic potential of N. marina based on its complete genome sequence and performed physiological experiments to test genome-derived hypotheses. Our data confirm that N. marina benefits from additions of undefined organic carbon substrates, has adaptations to resist oxidative, osmotic, and UV light-induced stress and low dissolved pCO2, and requires exogenous vitamin B12. In addition, N. marina is able to grow chemoorganotrophically on formate, and is thus not an obligate chemolithoautotroph. We further investigated the proteomic response of N. marina to low (∼5.6 µM) O2 concentrations. The abundance of a potentially more efficient CO2-fixing pyruvate:ferredoxin oxidoreductase (POR) complex and a high-affinity cbb3-type terminal oxidase increased under O2 limitation, suggesting a role in sustaining nitrite oxidation-driven autotrophy. This putatively more O2-sensitive POR complex might be protected from oxidative damage by Cu/Zn-binding superoxide dismutase, which also increased in abundance under low O2 conditions. Furthermore, the upregulation of proteins involved in alternative energy metabolisms, including Group 3b [NiFe] hydrogenase and formate dehydrogenase, indicate a high metabolic versatility to survive conditions unfavorable for aerobic nitrite oxidation. In summary, the genome and proteome of the first marine Nitrospira isolate identifies adaptations to life in the oxic ocean and provides insights into the metabolic diversity and niche differentiation of NOB in marine environments.Subject terms: Water microbiology, Microbial biooceanography, Marine microbiology, Bacterial genomics, Bacterial physiology  相似文献   

5.
The recently discovered comammox process encompasses both nitrification steps, the aerobic oxidation of ammonia and nitrite, in a single organism. All known comammox bacteria are affiliated with Nitrospira sublineage II and can be grouped into two distinct clades, referred to as A and B, based on ammonia monooxygenase phylogeny. In this study, we report high-quality draft genomes of two novel comammox Nitrospira from the terrestrial subsurface, representing one clade A and one clade B comammox organism. The two metagenome-assembled genomes were compared with other representatives of Nitrospira sublineage II, including both canonical and comammox Nitrospira. Phylogenomic analyses confirmed the affiliation of the two novel Nitrospira with comammox clades A and B respectively. Based on phylogenetic distance and pairwise average nucleotide identity values, both comammox Nitrospira were classified as novel species. Genomic comparison revealed high conservation of key metabolic features in sublineage II Nitrospira, including respiratory complexes I–V and the machineries for nitrite oxidation and carbon fixation via the reductive tricarboxylic acid cycle. In addition, the presence of the enzymatic repertoire for formate and hydrogen oxidation in the Rifle clades A and B comammox genomes, respectively, suggest a broader distribution of these metabolic features than previously anticipated.  相似文献   

6.
The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.  相似文献   

7.
8.
Bacterial aggregates from a chemolithoautotrophic, nitrifying fluidized bed reactor were investigated with microsensors and rRNA-based molecular techniques. The microprofiles of O2, NH4+, NO2, and NO3 demonstrated the occurrence of complete nitrification in the outer 125 μm of the aggregates. The ammonia oxidizers were identified as members of the Nitrosospira group by fluorescence in situ hybridization (FISH). No ammonia- or nitrite-oxidizing bacteria of the genus Nitrosomonas or Nitrobacter, respectively, could be detected by FISH. To identify the nitrite oxidizers, a 16S ribosomal DNA clone library was constructed and screened by denaturing gradient gel electrophoresis and selected clones were sequenced. The organisms represented by these sequences formed two phylogenetically distinct clusters affiliated with the nitrite oxidizer Nitrospira moscoviensis. 16S rRNA-targeted oligonucleotide probes were designed for in situ detection of these organisms. FISH analysis showed that the dominant populations of Nitrospira spp. and Nitrosospira spp. formed separate, dense clusters which were in contact with each other and occurred throughout the aggregate. A second, smaller, morphologically and genetically different population of Nitrospira spp. was restricted to the outer nitrifying zones.  相似文献   

9.
Members of the nitrite-oxidizing genus Nitrospira are most likely responsible for the second step of nitrification, the conversion of nitrite (NO2) to nitrate (NO3), within various sponges. We succeeded in obtaining an enrichment culture of Nitrospira derived from the mesohyl of the marine sponge Aplysina aerophoba using a traditional cultivation approach. Electron microscopy gave first evidence of the shape and ultrastructure of this novel marine Nitrospira-like bacterium (culture Aa01). We characterized these bacteria physiologically with regard to optimal incubation conditions, especially the temperature and substrate range in comparison to other Nitrospira cultures. Best growth was obtained at temperatures between 28°C and 30°C in mineral medium with 70% North Sea water and a substrate concentration of 0.5 mM nitrite under microaerophilic conditions. The Nitrospira culture Aa01 is very sensitive against nitrite, because concentrations higher than 1.5 mM resulted in a complete inhibition of growth. Sequence analyses of the 16S rRNA gene revealed that the novel Nitrospira-like bacterium is separated from the sponge-specific subcluster and falls together with an environmental clone from Mediterranean sediments (98.6% similarity). The next taxonomically described species Nitrospira marina is only distantly related, with 94.6% sequence similarity, and therefore the culture Aa01 represents a novel species of nitrite-oxidizing bacteria.Numerous sponges have the capacity to accommodate large amounts of diverse microbes and represent significant sources for bioactive natural compounds (13). Many marine invertebrates excrete ammonium as a metabolic waste product (9), and the excretion of nitrite and nitrate has been taken as primary evidence that nitrifiers are active in these animals (10). By modulation of their pumping, sponges are a suitable habitat not only for aerobic microbes but also for anaerobic microbes. Accordingly, Hoffmann et al. (19) were able to detect major microbial pathways of the nitrogen cycle in the sponge Geodia barretti, including nitrification, the anammox process, and denitrification.Nitrification involves the biological oxidation of ammonia (NH3) to nitrite (NO2) and further to nitrate (NO3) for energy purposes. It is of fundamental importance for the global nitrogen cycle in aquatic and terrestrial habitats. Nitrification is catalyzed by two phylogenetically distinct groups of microorganisms: in the first step, ammonia-oxidizing bacteria and archaea (AOB and AOA) take part in the oxidation of ammonia to nitrite, and in the second step nitrite-oxidizing bacteria (NOB) convert nitrite to nitrate (38).Nitrite has a central position in the nitrogen cycle, connecting aerobic and anaerobic pathways. Nitrite-oxidizing bacteria play a major role in removing nitrite from the environment because it is toxic for living organisms (31). Based on morphological characteristics, NOB have been divided into five genera. This classification also reflects the phylogenetic diversity of NOB, which includes Nitrobacter and Nitrococcus (Alpha- and Gammaproteobacteria), Nitrospina (putative Deltaproteobacteria), and the candidate genus “Candidatus Nitrotoga” (Betaproteobacteria) (2). The genus Nitrospira is more distantly related to the other known NOB because it is part of its own deep-branching bacterial phylum Nitrospirae. Marine species are present in all genera of NOB except in the newly identified genus “Candidatus Nitrotoga.”As all known nitrifying prokaryotes are slow growing and hard to maintain, their enrichment and isolation from environmental samples is difficult. Most physiological studies have been performed with pure cultures of a few “model” nitrifiers, in particular AOB related to the genus Nitrosomonas and NOB of the genus Nitrobacter. For the genus Nitrospira there are only four pure cultures available: the marine species Nitrospira marina (37), Nitrospira moscoviensis (12), “Candidatus Nitrospira bockiana” (25), and Nitrospira calida (E. Lebedeva, personal communication).Sponges of the family Aplysinidae contain large amounts of bacteria embedded within the sponge tissue matrix (15). For example, the biomass of Aplysina aerophoba consists of up to 40% bacteria (36). These sponges are able to differentiate between food bacteria and their own bacterial symbionts (41). Investigations of the diversity of sponge-associated bacteria, including different genetic and also cultivation approaches, have been made with several specimens (15, 16, 39). In terms of nitrification, Hentschel et al. (17) gave first evidence for the presence of nitrite oxidizers, and it has been verified that sponges harbor AOB and AOA (8). Most of the recognized NOB in sponges are Nitrospira-like bacteria (17, 32, 35), although in the beginning, there were further hints to 16S rRNA sequences, which are most closely related to Nitrospina gracilis (17). However, as these sequences were found only once, it could be assumed that Nitrospira is the main nitrite oxidizer in this environment. Nitrospira-like bacteria are deemed to be recalcitrant and fastidious, and they are easily overgrown by other bacteria under suboptimal conditions. Despite these limitations in the laboratory, Nitrospira was determined to be the most important nitrite oxidizer during wastewater treatment (21, 33), in aquaculture biofilters (14) and in freshwater systems (20, 29).Identification of sponge-associated microorganisms has been performed largely with culture-independent methods, which are 16S rRNA gene based (denaturing gradient gel electrophoresis [DGGE], terminal restriction fragment-length polymorphism [TRFLP]) or visual (fluorescence in situ hybridization [FISH], electron microscopy) (8, 11). Nevertheless, the cultivation of microorganisms is still essential for the investigation of their physiological potential and function in the environment. Information about physiological characteristics helps us to understand the metabolism and possible nutritional interactions of nitrifiers with the host sponge (8).This is the first report about cultivation of nitrifying bacteria originating from a marine sponge. We obtained a nitrite-oxidizing enrichment culture of a Nitrospira-like bacterium derived from Aplysina aerophoba, characterized it phylogenetically, and analyzed the most important physiological features.  相似文献   

10.
Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments. Here, we studied the seasonal distribution and diversity, and the effect of short-term pH changes on comammox and canonical Nitrospira in sediments of two saline, highly alkaline lakes. We identified diverse canonical and comammox Nitrospira clade A-like phylotypes as the only detectable NOB during more than a year, suggesting their major importance for nitrification in these habitats. Gross nitrification rates measured in microcosm incubations were highest at pH 10 and considerably faster than reported for other natural, aquatic environments. Nitrification could be attributed to canonical and comammox Nitrospira and to Nitrososphaerales ammonia-oxidizing archaea. Furthermore, our data suggested that comammox Nitrospira contributed to ammonia oxidation at an extremely alkaline pH of 11. These results identify saline, highly alkaline lake sediments as environments of uniquely strong nitrification with novel comammox Nitrospira as key microbial players.  相似文献   

11.
The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 ± 1.2‰, 32.5 ± 0.6‰, and 35.6 ± 1.4‰ for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 ± 4.2‰) was similar to that produced during hydroxylamine oxidation (33.5 ± 1.2‰) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 ± 1.7‰), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (−0.6 ± 1.9‰ and −0.5 ± 1.9‰, respectively) were similar to those during nitrate reduction (−0.5 ± 1.9‰ and −0.5 ± 0.6‰, respectively), indicating no influence of either substrate on site preference. Site preferences of ~33‰ and ~0‰ are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.  相似文献   

12.
13.
14.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

15.
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.  相似文献   

16.
Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2.  相似文献   

17.
Nine compounds (MO1–MO9) containing the morpholine moiety were assessed for their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Most of the compounds potently inhibited MAO-B; MO1 most potently inhibited with an IC50 value of 0.030 µM, followed by MO7 (0.25 µM). MO5 most potently inhibited AChE (IC50 = 6.1 µM), followed by MO9 (IC50 = 12.01 µM) and MO7 most potently inhibited MAO-A (IC50 = 7.1 µM). MO1 was a reversible mixed-type inhibitor of MAO-B (Ki = 0.018 µM); MO5 reversibly competitively inhibited AChE (Ki = 2.52 µM); and MO9 reversibly noncompetitively inhibited AChE (Ki = 7.04 µM). MO1, MO5 and MO9 crossed the blood–brain barrier, and were non-toxic to normal VERO cells. These results show that MO1 is a selective inhibitor of MAO-B and that MO5 is a dual-acting inhibitor of AChE and MAO-B, and that both should be considered candidates for the treatment of Alzheimer’s disease.  相似文献   

18.
Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.  相似文献   

19.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

20.
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.

Highlights

  1. A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase.
  2. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase.
  3. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase.
  4. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号