首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unravelling the factors shaping the genetic structure of mobile marine species is challenging due to the high potential for gene flow. However, genetic inference can be greatly enhanced by increasing the genomic, geographical or environmental resolution of population genetic studies. Here, we investigated the population structure of turbot (Scophthalmus maximus) by screening 17 random and gene‐linked markers in 999 individuals at 290 geographical locations throughout the northeast Atlantic Ocean. A seascape genetics approach with the inclusion of high‐resolution oceanographical data was used to quantify the association of genetic variation with spatial, temporal and environmental parameters. Neutral loci identified three subgroups: an Atlantic group, a Baltic Sea group and one on the Irish Shelf. The inclusion of loci putatively under selection suggested an additional break in the North Sea, subdividing southern from northern Atlantic individuals. Environmental and spatial seascape variables correlated marginally with neutral genetic variation, but explained significant proportions (respectively, 8.7% and 10.3%) of adaptive genetic variation. Environmental variables associated with outlier allele frequencies included salinity, temperature, bottom shear stress, dissolved oxygen concentration and depth of the pycnocline. Furthermore, levels of explained adaptive genetic variation differed markedly between basins (3% vs. 12% in the North and Baltic Sea, respectively). We suggest that stable environmental selection pressure contributes to relatively strong local adaptation in the Baltic Sea. Our seascape genetic approach using a large number of sampling locations and associated oceanographical data proved useful for the identification of population units as the basis of management decisions.  相似文献   

2.
Genetic population structure of turbot (Scophthalmus maximus L.) in the Northeast Atlantic was investigated using eight highly variable microsatellite loci. In total 706 individuals from eight locations with temporal replicates were assayed, covering an area from the French Bay of Biscay to the Aaland archipelago in the Baltic Sea. In contrast to previous genetic studies of turbot, we found significant genetic differentiation among samples with a maximum pairwise FST of 0.032. Limited or no genetic differentiation was found among samples within the Atlantic/North Sea area and within the Baltic Sea, suggesting high gene flow among populations in these areas. In contrast, there was a sharp cline in genetic differentiation going from the low saline Baltic Sea to the high saline North Sea. The data were explained best by two divergent populations connected by a hybrid zone; however, a mechanical mixing model could not be ruled out. A significant part of the genetic variance could be ascribed to variation among years within locality. Nevertheless, the population structure was relatively stable over time, suggesting that the observed pattern of genetic differentiation is biologically significant. This study suggests that hybrid zones are a common phenomenon for marine fishes in the transition area between the North Sea and the Baltic Sea and highlights the importance of using interspecific comparisons for inferring population structure in high gene flow species such as most marine fishes.  相似文献   

3.
In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.  相似文献   

4.
During the last decade, genetic studies have been carried out on samples of Atlantic herring, CIupea harengus L., from the Baltic, North Sea, British Isles, Norwegian sea-waters and in the western part of the North Atlantic Ocean. Based on direct comparisons of samples drawn from several areas, the available information on allozyme variation was compiled into a comparable data set and analysed for population structure and genetic distance. The results are discussed in relation to the present stock model for herring.  相似文献   

5.
We examined the genetic population structure in eelgrass (Zostera marina L.), the dominant seagrass species of the northern hemisphere, over spatial scales from 12 km to 10 000 km using the polymorphism of DNA microsatellites. Twelve populations were genotyped for six loci representing a total of 67 alleles. Populations sampled included the North Sea (four), the Baltic Sea (three), the western Atlantic (two), the eastern Atlantic (one), the Mediterranean Sea (one) and the eastern Pacific (one). Microsatellites revealed substantial genetic variation in a plant group with low allozyme diversity. Average expected heterozygosities per population (monoclonal populations excluded) ranged from 0.32 to 0.61 (mean = 0. 48) and allele numbers varied between 3.3 and 6.7 (mean = 4.7). Using the expected frequency of multilocus genotypes within populations, we distinguished ramets from genetic individuals (i.e. equivalent to clones). Differences in clonal diversity among populations varied widely and ranged from maximal diversity (i.e. all ramets with different genotype) to near or total monoclonality (two populations). All multiple sampled ramets were excluded from further analysis of genetic differentiation within and between populations. All but one population were in Hardy-Weinberg equilibrium, indicating that Zostera marina is predominantly outcrossing. From a regression of the pairwise population differentiation with distance, we obtained an effective population size Ne of 2440-5000. The overall genetic differentiation among eelgrass populations, assessed as rho (a standardized estimate of Slatkin's RST) was 0.384 (95% CI 0.34-0.44, P < 0.001). Genetic differentiation was weak among three North Sea populations situated 12-42 km distant from one another, suggesting that tidal currents result in an efficient exchange of propagules. In the Baltic and in Nova Scotia, a small but statistically significant fraction of the genetic variance was distributed between populations (rho = 0.029-0. 053) at scales of 15-35 km. Pairwise genetic differentiation between European populations were correlated with distance between populations up to a distance of 4500 km (linear differentiation-by-distance model, R2 = 0.67). In contrast, both Nova Scotian populations were genetically much closer to North Sea and Baltic populations than expected from their geographical distance (pairwise rho = 0.03-0.08, P < 0.01). A biogeographical cluster of Canadian with Baltic/North Sea populations was also supported using a neighbour-joining tree based on Cavalli-Sforza's chord distance. Relatedness between populations may be very different from predictions based on geographical vicinity.  相似文献   

6.
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.  相似文献   

7.
Genetic variation was examined within and among North Atlantic, North Sea and Baltic populations of the benthic red alga Phycodrys rubens using allozymes and random amplified polymorphic DNA (RAPD) markers. On western and eastern North Atlantic coasts distinct allozyme types were found, with the exception of western Newfoundland where East and West Atlantic types co-occur. Along the European coasts, two genetic groups were distinguished by fixed allelic differences: an outer oceanic group and a North Sea/Baltic group. The two genetic types co-occur in the Skagerrak and Kattegat region. Reproductive isolation between the two types is suggested by the lack of hybrids in the overlap zones, and they may therefore represent sibling species. Unexpectedly, an analysis of RAPD variation was unable to recover the two cryptic species identified using allozymes. Within-population RAPD variation was similar to or greater than between-population variation. The lack of structure in the RAPD data cannot be attributed solely to technical artefacts of the method but appears to reflect real biological variability. Within-population genomic polymorphisms caused by frequent mutational events are discussed, as are high amounts of genetic drift and possible disruptive selection brought about by stressed habitats. Finally, Baltic and extra-Baltic salinity ecotypes are known to exist in P. rubens. However, no correlation between ecotypic variation and allozyme groups was detected.  相似文献   

8.
Aphanizomenon Morren is an important member of the cyanobacterial community in the Baltic Sea, but studies of this genus have been hampered by the difficulty of growing it in laboratory culture. PCR amplification of DNA from colonies picked directly from water samples has circumvented this problem and made it possible to carry out an analysis of genetic diversity within the Baltic Sea and in two small North American lakes separated by just a few kilometers. The nucleotide sequence of the phycocyanin intergenic spacer and partial flanking coding regions of cpcB and cpcA was determined for 32 colonies of Aphanizomenon , 26 from the Baltic Sea, and 6 from the North American lakes. No variation was detected among the 26 Baltic Sea colonies, but two alleles, differing at 19 nucleotide positions (5.4%), were found in the North American lake colonies. Surprisingly, the two North American types were less closely related to each other than to the Baltic Sea genotype. The Baltic Sea Aphanizomenon is clearly distinct from A. flos-aquae at both the cpcB–cpcA and 16S rDNA loci, which lends phylogenetic support to their tentative separation based on ultrastructural analysis. We conclude that although there is significant genetic diversity in the genus Aphanizomenon , the population in the Baltic Sea is, in contrast to the Nodularia population, genetically homogeneous.  相似文献   

9.
Population-specific assessment and management of anadromous fish at sea requires detailed information about the distribution at sea over ontogeny for each population. However, despite a long history of mixed-stock sea fisheries on Atlantic salmon, Salmo salar, migration studies showing that some salmon populations feed in different regions of the Baltic Sea and variation in dynamics occurs among populations feeding in the Baltic Sea, such information is often lacking. Also, current assessment of Baltic salmon assumes equal distribution at sea and therefore equal responses to changes in off-shore sea fisheries. Here, we test for differences in distribution at sea among and within ten Atlantic salmon Salmo salar populations originating from ten river-specific hatcheries along the Swedish Baltic Sea coast, using individual data from >125,000 tagged salmon, recaptured over five decades. We show strong population and size-specific differences in distribution at sea, varying between year classes and between individuals within year classes. This suggests that Atlantic salmon in the Baltic Sea experience great variation in environmental conditions and exploitation rates over ontogeny depending on origin and that current assessment assumptions about equal exploitation rates in the offshore fisheries and a shared environment at sea are not valid. Thus, our results provide additional arguments and necessary information for implementing population-specific management of salmon, also when targeting life stages at sea.  相似文献   

10.
11.
Most studies of the genetic structure of Atlantic cod have focused on small geographical scales. In the present study, the genetic structure of cod sampled on spawning grounds in the North Atlantic was examined using eight microsatellite loci and the Pan I locus. A total of 954 cod was collected from nine different regions: the Baltic Sea, the North Sea, the Celtic Sea, the Irish Sea and Icelandic waters during spring 2002 and spring 2003, from Norwegian waters and the Faroe Islands (North and West spawning grounds) in spring 2003, and from Canadian waters in 1998. Temporal stability among spawning grounds was observed in Icelandic waters and the Celtic Sea, and no significant difference was observed between the samples from the Baltic Sea and between the samples from Faroese waters. F -statistics showed significant differences between most populations and a pattern of isolation-by-distance was described with microsatellite loci. The Pan I locus revealed the presence of two genetically distinguishable basins, the North-west Atlantic composed of the Icelandic and Canadian samples and the North-east Atlantic composed of all other samples. Permutation of allele sizes at each microsatellite locus among allelic states supported a mutational component to the genetic differentiation, indicating a historical origin of the observed variation. Estimation of the time of divergence was approximately 3000 generations, which places the origin of current genetic pattern of cod in the North Atlantic in the late Weichselian (Wisconsinian period), at last glacial maximum.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 315–329.  相似文献   

12.
13.
We investigated the geographical distribution of genetic variation in 67 individuals of Triglochin maritima from 38 localities across Europe using AFLP markers. Analysis of genetic variation resulted in the recognition of two major genetic groups. Apart from few geographical outliers, these are distributed (1) along the Atlantic coasts of Portugal, Spain and France and (2) in the North Sea area, the Baltic Sea area, at central European inland localities, the northern Adriatic Sea coast and the Mediterranean coast of southwest France. Considering possible range shifts of T. maritima in reaction to Quaternary climatic changes as deduced from the present-day northern temperature limit of the species, Quaternary changes of coastline in the North Sea area and the very recent origin of the Baltic Sea, we conclude that the coastal populations of T. maritima in the North Sea and Baltic Sea areas originated from inland populations.  相似文献   

14.
A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples covering a large part of the species' range (global F(ST) = 0.024, P < 0.0001). In addition to historical processes, a number of contemporary acting evolutionary mechanisms were associated with genetic structuring. Physical forces, such as oceanographic and bathymetric barriers, were most likely related with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic and western Baltic Sea samples. Alternative factors, such as dispersal potential and/or environmental gradients, could be important for generating genetic divergence in this region. The results show that the magnitude and scale of structuring generated by a specific mechanism depend critically on its interplay with other evolutionary mechanisms, highlighting the importance of investigating species with wide geographical and ecological distributions to increase our understanding of evolution in the marine environment.  相似文献   

15.
We sequenced exon 2 of the MHC class II B gene in Atlantic salmon from the Baltic Sea and identified 17 different exon 2 alleles among 22 different restriction fragment length polymorphism haplotypes. The sequences differed at between 1 and 34 bases. Two different tests were used to estimate the importance of recombination in the generation of new alleles. Recombination events appear to have occurred between three and nine times. Only two pairs of sequences differed by less than five nucleotides, minimizing the importance of point mutations for generating new alleles. Phylogenetic analysis showed that sequences did not cluster according to populations, and genetic distances between populations were small compared to those obtained by allele frequency data. These results, together with the similarity found between exon 2 sequences from Baltic salmon and Norwegian salmon, indicate that all of the identified alleles were present in the ancient salmon population colonizing the Baltic rivers after the last glaciation.  相似文献   

16.
Stocking can be an effective management and conservation tool, but it also carries the danger of eroding natural population structure, introducing non-native strains and reducing genetic diversity. Sea trout, the anadromous form of the brown trout (Salmo trutta), is a highly targeted species that is often managed by stocking. Here, we assess the present-day population genetic structure of sea trout in a backdrop of 125 years of stocking in Northern Germany. The study area is characterized by short distances between the Baltic and North Sea river watersheds, historic use of fish from both watersheds for stocking, and the creation of a potential migration corridor between the Baltic and North Sea with the opening of the Kiel Canal 120 years ago. A survey of 24 river systems with 180 SNPs indicates that moderate but highly significant population genetic structure has persisted both within and between the Baltic and North Sea. This genetic structure is characterized by (i) heterogeneous patterns of admixture between the Baltic and North Sea that do not correlate with distance from the Kiel Canal and are therefore likely due to historic stocking practises, (ii) genetic isolation by distance in the Baltic Sea at a spatial scale of <?200 km that is consistent with the homing behaviour of sea trout, and (iii) at least one genetically distinct Baltic Sea river system. In light of these results, we recommend keeping fish of North Sea and Baltic Sea origin separate for stocking, and restricting Baltic Sea translocations to neighbouring river systems.  相似文献   

17.
Synopsis I combined neutral microsatellite markers with the major histocompatibility complex (MHC) class IIB to study genetic differentiation and colonization history in Atlantic salmon, Salmo salar, in the Baltic Sea and in the north-eastern Atlantic. Baltic salmon populations have lower levels of microsatellite genetic variation, in terms of heterozygosity and allelic richness than Atlantic populations, confirming earlier findings with other genetic markers, suggesting that the Baltic Sea populations have been exposed to genetic bottlenecks, most likely at a founding event. On the other hand, the level of MHC variation was similar in the Baltic and in the north-eastern Atlantic, indicating that positive balancing selection has increased the level of MHC-variation. Both microsatellite and MHC class IIB genetic variation give strong support to the hypothesis that the Baltic salmon are of a biphyletic origin, the southern population in this study is strongly differentiated from both the northern Baltic salmon populations and from the north-eastern Atlantic populations. Salmon may have colonized the northern Baltic Sea either from the south, via the so called “N?rke strait” or from the north, via a proposed historical connection between the White Sea and the northern Baltic. At microsatellites, no significant isolation-by distance was found at either colonization route. At the MHC, populations were significantly isolated by distance when assuming that colonization occurred via the “N?rke strait”.  相似文献   

18.
The marine environment is characterized by few physical barriers, and pelagic fishes commonly show high migratory potential and low, albeit in some cases statistically significant, levels of genetic divergence in neutral genetic marker analyses. However, it is not clear whether low levels of differentiation reflect spatially separated populations experiencing gene flow or shallow population histories coupled with limited random genetic drift in large, demographically isolated populations undergoing independent evolutionary processes. Using information for nine microsatellite loci in a total of 1951 fish, we analyzed genetic differentiation among Atlantic herring from eleven spawning locations distributed along a longitudinal gradient from the North Sea to the Western Baltic. Overall genetic differentiation was low (theta = 0.008) but statistically significant. The area is characterized by a dramatic shift in hydrography from the highly saline and temperature stable North Sea to the brackish Baltic Sea, where temperatures show high annual variation. We used two different methods, a novel computational geometric approach and partial Mantel correlation analysis coupled with detailed environmental information from spawning locations to show that patterns of reproductive isolation covaried with salinity differences among spawning locations, independent of their geographical distance. We show that reproductive isolation can be maintained in marine fish populations exhibiting substantial mixing during larval and adult life stages. Analyses incorporating genetic, spatial, and environmental parameters indicated that isolating mechanisms are associated with the specific salinity conditions on spawning locations.  相似文献   

19.
The maternal and paternal genetic variation of horse breeds from the Baltic Sea region, including three local Estonian breeds, was assessed and compared with that of Altai and Yakutian horses. In the mtDNA D‐loop region, 72 haplotypes assigned to 20 haplogroups in the nine breeds were detected. In Estonian local breeds, 38 mtDNA haplotypes were found, and five of them were shared by the three breeds. More than 60% of all identified haplotypes were rare. Compared with the Estonian Native and Estonian Heavy Draught breeds, a higher haplotypic diversity was found in the Tori breed (h = 0.969). Moreover, four haplotypes shared among Finnish and Estonian local horse breeds indicated ancient ancestry, and of these, H30 (haplogroup D3) showed global sharing and genetic links between modern Baltic Sea region and Siberian horses, specifically. The studied breed set showed high variability in maternal inheritance and mixed patterns of the international and native breeds of the Siberian and Baltic regions. No variation was found in paternally inherited markers among horse breeds in the Baltic Sea region.  相似文献   

20.
Detecting and estimating the degree of genetic differentiation among populations of highly mobile marine fish having pelagic larval stages is challenging because their effective population sizes can be large, and thus, little genetic drift and differentiation is expected in neutral genomic sites. However, genomic sites subject to directional selection stemming from variation in local environmental conditions can still show substantial genetic differentiation, yet these signatures can be hard to detect with low‐throughput approaches. Using a pooled RAD‐seq approach, we investigated genomewide patterns of genetic variability and differentiation within and among 20 populations of Atlantic herring in the Baltic Sea (and adjacent Atlantic sites), where previous low‐throughput studies and/or studies based on few populations have found limited evidence for genetic differentiation. Stringent quality control was applied in the filtering of 1 791 254 SNPs, resulting in a final data set of 68 182 polymorphic loci. Clear differentiation was identified between Atlantic and Baltic populations in many genomic sites, while differentiation within the Baltic Sea area was weaker and geographically less structured. However, outlier analyses – whether including all populations or only those within the Baltic Sea – uncovered hundreds of directionally selected loci in which variability was associated with either salinity, temperature or both. Hence, our results support the view that although the degree of genetic differentiation among Baltic Sea herring populations is low, there are many genomic regions showing elevated divergence, apparently as a response to temperature‐ and salinity‐related natural selection. As such, the results add to the increasing evidence of local adaptation in highly mobile marine organisms, and those in the young Baltic Sea in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号