首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of elevated CO2 (eCO2) on the relative uptake of inorganic and organic nitrogen (N) are unclear. The uptake of different N sources by pak choi (Brassica chinensis L.) seedlings supplied with a mixture of nitrate, glycine and ammonium was studied using 15N‐labelling under ambient CO2 (aCO2) (350 ppm) or eCO2 (650 ppm) conditions. 15N‐labelled short‐term uptake and 15N‐gas chromatography mass spectrometry (GC–MS) were applied to measure the effects of eCO2 on glycine uptake and metabolism. Elevated CO2 increased the shoot biomass by 36% over 15 days, but had little effect on root growth. Over the same period, the N concentrations of shoots and roots were decreased by 30 and 2%, respectively. Elevated CO2 enhanced the uptake and N contribution of glycine, which accounted for 38–44% and 21–40% of total N uptake in roots and shoots, respectively, while the uptake of nitrate and ammonium was reduced. The increased glycine uptake resulted from the enhanced active uptake and enhanced metabolism in the roots. We conclude that eCO2 may increase the uptake and contribution of organic N forms to total plant N nutrition. Our findings provide new insights into plant N regulation under eCO2 conditions.  相似文献   

2.

Background & aims

Understanding the mechanism of how phosphorus (P) regulates the response of legumes to elevated CO2 (eCO2) is important for developing P management strategies to cope with increasing atmospheric CO2 concentration. This study aimed to explore this mechanism by investigating interactive effects of CO2 and P supply on root morphology, nodulation and soil P fractions in the rhizosphere.

Methods

A column experiment was conducted under ambient (350?ppm) (aCO2) and eCO2 (550?ppm) in a free air CO2 enrichment (FACE) system. Chickpea and field pea were grown in a P-deficient Vertisol with P addition of 0–16?mg?P?kg?1.

Results

Increasing P supply increased plant growth and total P uptake with the increase being greater under eCO2 than under aCO2. Elevated CO2 increased root biomass and length, on average, by 16?% and 14?%, respectively. Nodule biomass increased by 46?% in response to eCO2 at 16?mg P kg?1, but was not affected by eCO2 at no P supply. Total P uptake was correlated with root length while N uptake correlated with nodule number and biomass regardless of CO2 level. Elevated CO2 increased the NaOH-extractable organic P by 92?% when 16?mg P kg?1 was applied.

Conclusion

The increase in P and N uptake and nodule number under eCO2 resulted from the increased biomass production, rather than from changes in specific root-absorbing capability or specific nodule function. Elevated CO2 appears to enhance P immobilization in the rhizosphere.  相似文献   

3.
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.  相似文献   

4.
Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2.Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi).Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers.Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves.  相似文献   

5.

Aims

The efficient management of phosphorus (P) in cropping systems remains a challenge due to climate change. We tested how plant species access P pools in soils of varying P status (Olsen-P 3.2–17.6 mg?kg?1), under elevated atmosphere CO2 (eCO2).

Methods

Chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) plants were grown in rhizo-boxes containing Vertosol or Calcarosol soil, with two contrasting P fertilizer histories for each soil, and exposed to ambient (380 ppm) or eCO2 (700 ppm) for 6 weeks.

Results

The NaHCO3-extractable inorganic P (Pi) in the rhizosphere was depleted by both wheat and chickpea in all soils, but was not significantly affected by CO2 treatment. However, NaHCO3-extractable organic P (Po) accumulated, especially under eCO2 in soils with high P status. The NaOH-extractable Po under eCO2 accumulated only in the Vertosol with high P status. Crop species did not exhibit different eCO2-triggered capabilities to access any P pool in either soil, though wheat depleted NaHCO3-Pi and NaOH-Pi in the rhizosphere more than chickpea. Elevated CO2 increased microbial biomass C in the rhizosphere by an average of 21 %. Moreover, the size in Po fractions correlated with microbial C but not with rhizosphere pH or phosphatase activity.

Conclusion

Elevated CO2 increased microbial biomass in the rhizosphere which in turn temporally immobilized P. This P immobilization was greater in soils with high than low P availability.  相似文献   

6.
Despite knowledge of the interaction between climate change factors significant uncertainty exists concerning the individual and interactive effects of elevated carbon dioxide (eCO2) and elevated temperature (eT) on the soil microbiome and function. Here we examine the individual and interactive effects of eCO2 and eT on tree growth, soil respiration (Rsoil), biomass, structural and functional composition of microbial community, nitrogen (N) mineralisation and N availability in a whole tree chamber experiment. Eucalyptus globulus plants were grown from seedling to ca. 10 m tall for 15 months in a nutrient-poor sandy soil under ambient and elevated (+ 240 ppm) atmospheric CO2 concentrations combined with ambient or elevated temperatures (+ 3 °C) in a full factorial design. Plant growth was strongly stimulated under eCO2, but eT had little impact on any measured plant property. In contrast, Rsoil was not consistently affected by eCO2 or eT, but correlated strongly with root and leaf biomass. The response of N-mineralisation and nutrient availability to eCO2 and eT varied across time, and available N correlated strongly with plant height. Further, the C:N ratio of the microbial biomass and leaves were both higher under eCeT treatment. However, these functional measures were not significantly linked to either structural or functional diversity of the soil microbiome. Taken together, these results suggest that in this low-nutrient soil, belowground processes are principally driven by aboveground productivity. Our work provides novel insight into mechanisms underlying above- and belowground response to climate change, and the potential to sequester C in a low-nutrient status soil under future climatic conditions may be limited .  相似文献   

7.
Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.  相似文献   

8.
The development of herbivore insects is influenced by the quality of their host plants. Elevated CO2 alters plant metabolism, which may change the nutritional quality of the plant, modifying the life history and feeding behaviour of herbivore insects. Understanding how insect pests respond to increasing CO2 concentration is essential for predicting the impact of the pest on food security. In this study, we investigated the effects of elevated CO2 (eCO2) on the life history and feeding behaviour of the MEAM1 species of Bemisia tabaci on a Bt soybean cultivar. We found that eCO2 increased the egg to adult development time and reduced the reproductive responses (fecundity and fertility) of B. tabaci. The whitefly B. tabaci that fed on the soybean plants grown under eCO2 conditions was negatively influenced by several traits related to the host plant resistance, such as the time spent on phloem sap ingestion. Furthermore, we evaluated the changes in the C:N concentration and plant morphology of the Bt plants. The biomass (weight of leaves and stems) of the Bt soybean plants grown under eCO2 conditions was significantly increased, and the elevated C:N ratio in the phenological stage V6 (i.e. when the plants had six trifoliate leaves developed) was the most pronounced difference in the Bt soybean plants subjected to eCO2 treatment. Taken together, our results indicate that Bt plants cultivated under eCO2 inhibit B. tabaci feeding, which can reduce whitefly infestations of the soybean fields.  相似文献   

9.
Free‐air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)‐limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18‐month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P‐limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (‐0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability – particularly for phosphate – in P‐limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C‐accumulation under future predicted CO2 concentrations.  相似文献   

10.
Plots containing Lolium perenne L., Trifolium repens L. or a mixture of both plant species were exposed to elevated atmospheric CO2 (eCO2) for 10 consecutive seasons using free‐air CO2 enrichment technology at ETH Zürich, Switzerland. The CO2 treatment was crossed with a two‐level nitrogen (N) fertilization treatment. In the tenth year, soil samples were collected on three occasions through the growing season to assess the impact of eCO2 and N fertilization on mycorrhizal fungal abundance. Soil moisture content, which varied with harvest date, was linked to the vegetation type and was higher under eCO2. Root weight density was affected by vegetation type: lower for clover, higher for grass. Root weight density was stimulated by eCO2 and decreased by high N fertilization. The percent root length colonized by mycorrhizal fungi was lowest in the clover plots and highest in the grass plots. High N significantly decreased root length colonized. There was no overall effect of eCO2 on root length colonized; however, there was a significant eCO2× N interaction: eCO2 increased root length colonized at high N, but decreased root length colonized at low N. Extraradical mycorrhizal hyphal density was linked to soil moisture content. Extraradical mycorrhizal hyphal density was not affected by eCO2 or high N individually, but as for root length colonized, there was a significant eCO2× N interaction: eCO2 increased extraradical mycorrhizal hyphal density at low N but not at high N. These environmental effects on root colonization and external mycorrhizal hyphae were independent of soil moisture content and root weight density. This field study demonstrated a significant mediating effect of N fertilization on the response of arbuscular mycorrhizal fungi to eCO2 irrespective of any change in root biomass.  相似文献   

11.
Global environmental changes, such as rising atmospheric CO2 concentrations, have a wide range of direct effects on plant physiology, growth, and fecundity. These environmental changes also can affect plants indirectly by altering interactions with other species. Therefore, the effects of global changes on a particular species may depend on the presence and abundance of other community members. We experimentally manipulated atmospheric CO2 concentration and amounts of herbivore damage (natural insect folivory and clipping to simulate browsing) to examine: (1) how herbivores mediate the effects of elevated CO2 (eCO2) on the growth and fitness of Arabidopsis thaliana; and (2) how predicted changes in CO2 concentration affect plant resistance to herbivores, which influences the amount of damage plants receive, and plant tolerance of herbivory, or the fitness consequences of damage. We found no evidence that CO2 altered resistance, but plants grown in eCO2 were less tolerant of herbivory—clipping reduced aboveground biomass and fruit production by 13 and 22%, respectively, when plants were reared under eCO2, but plants fully compensated for clipping in ambient CO2 (aCO2) environments. Costs of tolerance in the form of reduced fitness of undamaged plants were detected in eCO2 but not aCO2 environments. Increased costs could reduce selection on tolerance in eCO2 environments, potentially resulting in even larger fitness effects of clipping in predicted future eCO2 conditions. Thus, environmental perturbations can indirectly affect both the ecology and evolution of plant populations by altering both the intensity of species interactions as well as the fitness consequences of those interactions.  相似文献   

12.
The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on nitrogen (N) acquisition and assimilation by three Medicago truncatula genotypes, including two N-fixing-deficient mutants (dnf1-1 and dnf1-2) and their wild-type (Jemalong). The proportion of N acquisition from atmosphere and soil were quantified by 15N stable isotope, and N transportation and assimilation-related genes and enzymes were determined by qPCR and biochemical analysis. Elevated CO2 decreased nitrate uptake from soil in all three plant genotypes by down-regulating nitrate reductase (NR), nitrate transporter NRT1.1 and NR activity. Jemalong plant, however, produced more nodules, up-regulated N-fixation-related genes and enhanced percentage of N derived from fixation (%Ndf) to increase foliar N concentration and N content in whole plant (Ntotal Yield) to satisfy the requirement of larger biomass under elevated CO2. In contrast, both dnf1 mutants deficient in N fixation consequently decreased activity of glutamine synthetase/glutamate synthase (GS/GOGAT) and N concentration under elevated CO2. Our results suggest that elevated CO2 is likely to modify N acquisition of M. truncatula by simultaneously increasing N fixation and reducing nitrate uptake from soil. We propose that elevated CO2 causes legumes to rely more on N fixation than on N uptake from soil to satisfy N requirements.  相似文献   

13.
Rising atmospheric CO2 levels alter the physiology of many plant species, but little is known of changes to root dynamics that may impact soil microbial mediation of greenhouse gas emissions from wetlands. We grew co-occurring wetland plant species that included an invasive reed canary grass (Phalaris arundinacea L.) and a native woolgrass (Scirpus cyperinus L.) in a controlled greenhouse facility under ambient (380 ppm) and elevated atmospheric CO2 (700 ppm). We hypothesized that elevated atmospheric CO2 would increase the abundance of both archaeal methanogen and bacterial methanotroph populations through stimulation of plant root and shoot biomass. We found that methane levels emitted from S. cyperinus shoots increased 1.5-fold under elevated CO2, while no changes in methane levels were detected from P. arundincea. The increase in methane emissions was not explained by enhanced root or shoot growth of S. cyperinus. Principal components analysis of the total phospholipid fatty acid (PLFA) recovered from microbial cell membranes revealed that elevated CO2 levels shifted the composition of the microbial community under S. cyperinus, while no changes were detected under P. arundinacea. More detailed analysis of microbial abundance showed no impact of elevated CO2 on a fatty acid indicative of methanotrophic bacteria (18:2ω6c), and no changes were detected in the terminal restriction fragment length polymorphism (T-RFLP) relative abundance profiles of acetate-utilizing archaeal methanogens. Plant carbon depleted in 13C was traced into the PLFAs of soil microorganisms as a measure of the plant contribution to microbial PLFA. The relative contribution of plant-derived carbon to PLFA carbon was larger in S. cyperinus compared with P. arundinacea in four PLFAs (i14:0, i15:0, a15:0, and 18:1ω9t). The δ13C isotopic values indicate that the contribution of plant-derived carbon to microbial lipids could differ in rhizospheres of CO2-responsive plant species, such as S. cyperinus in this study. The results from this study show that the CO2–methane link found in S. cyperinus can occur without a corresponding change in methanogen and methanotroph relative abundances, but PLFA analysis indicated shifts in the community profile of bacteria and fungi that were unique to rhizospheres under elevated CO2.  相似文献   

14.

Background &; aims

Elevated atmospheric CO2 (eCO2) can affect soil-plant systems via stimulating plant growth, rhizosphere activity and the decomposition of added (crop residues) or existing (priming) soil organic carbon (C). Increases in C inputs via root exudation, rhizodeposition and root turnover are likely to alter the decomposition of crop residues but will ultimately depend on the N content of the residues and the soil.

Methods

Two soil column experiments were conducted under ambient CO2 (aCO2, 390 ppm) and eCO2 (700 ppm) in a glasshouse using dual-labelled (13C/15N) residues of wheat (Triticum aestivum cv. Yitpi) and field pea (Pisum sativum L. cv. PBA Twilight). The effects of eCO2 and soil N status on wheat rhizosphere activity and residue decomposition and also N recovery from crop residues with different N status (C/N ratio 19.4–115.4) by different plant treatments (wheat, wheat + 25 mg N kg?1 and field pea).

Results

Total belowground CO2 efflux was enhanced under eCO2 despite no increases in root biomass. Plants decreased residue decomposition, indicating a negative rhizosphere effect. For wheat, eCO2 reduced the negative rhizosphere effect, resulting in greater rates of decomposition and recovery of N from field pea residues, but only when N fertiliser was added. For field pea, eCO2 enhanced the negative rhizosphere effect resulting in lower decomposition rates and N recovery from field pea residue.

Conclusions

The effect of eCO2 on N utilisation varied with the type of residue, enhancing N utilisation of wheat but repressing that of field pea residues, which in turn could alter the amount of N supplied to subsequent crops. Furthermore, reduced decomposition of residues under eCO2 may slow the formation of new soil C and have implications for long-term soil fertility.
  相似文献   

15.
Elevated concentrations of atmospheric CO2 can alter plant secondary metabolites,which play important roles in the interactions among plants,herbivorous insects and natural enemies.However,few studies have examined the cascading effects of host plant secondary metabolites on tri-trophic interactions under elevated CO2(eCO2).In this study,we determined the effects of eCO2 on the growth and foliar phenolics of Medicago truncatula and the cascading effects on two color genotypes oiAcyrthosiphon pisum(pink vs.green)and their parasitoid Aphidius avenae in the field open-top chambers.Our results showed that eCO2 increased photosynthetic rate,nodule number,yield and the total phenolic content of M.truncatula.eCO2 had contrasting effects on two genotypes of A.pisum;the green genotype demonstrated increased population abundance,fecundity,growth and feeding efficiency,while the pink genotype showed decreased fitness and these were closely associated with the foliar genstein content.Furthermore,eCO2 decreased the parasitic rate of A.avenae independent of aphid genotypes.eCO2 prolonged the emergence time and reduced the emergence rate and percentage of females when associated with the green genotype,but little difference,except for increased percentage of females,was observed in A.avenae under eCO2 when associated with the pink genotype,indicating that parasitoids can perceive and discriminate the qualities of aphid hosts.We concluded that eCO2 altered plant phenolics and thus the performance of aphids and parasitoids.Our results indicate that plant phenolics vary by different abiotic and biotic stimuli and could potentially deliver the cascading effects of eCO2 to the higher trophic levels.Our results also suggest that the green genotype is expected to perform better in future eCO2 because of decreased plant resistance after its infestation and decreased parasitic rate.  相似文献   

16.
1. Elevated CO2 can alter plant physiology and morphology, and these changes are expected to impact diet quality for insect herbivores. While the plastic responses of insect herbivores have been well studied, less is known about the propensity of insects to adapt to such changes. Genetic variation in insect responses to elevated CO2 and genetic interactions between insects and their host plants may exist and provide the necessary raw material for adaptation. 2. We used clonal lines of Rhopalosiphum padi (L.) aphids to examine genotype‐specific responses to elevated CO2. We used the host plant Schedonorus arundinaceus (tall fescue; Schreb), which is capable of asexual reproduction, to investigate host plant genotype‐specific effects and possible host plant‐by‐insect genotype interactions. The abundance and density of three R. padi genotypes on three tall fescue genotypes under three concentrations of CO2 (ambient, 700, and 1000 ppm) in a controlled greenhouse environment were examined. 3. Aphid abundance decreased in the 700 ppm CO2 concentration, but increased in the 1000 ppm concentration relative to ambient. The effect of CO2 on aphid density was dependent on host plant genotype; the density of aphids in high CO2 decreased for two plant genotypes but was unchanged in one. No interaction between aphid genotype and elevated CO2 was found, nor did we find significant genotype‐by‐genotype interactions. 4. This study suggests that the density of R. padi aphids feeding on tall fescue may decrease under elevated CO2 for some plant genotypes. The likely impact of genotype‐specific responses on future changes in the genetic structure of plant and insect populations is discussed.  相似文献   

17.
Elevated CO2 (eCO2) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nitrogen (N) application rates across experimental data covering 11 field grown wheat (Triticum aestivum) cultivars studied in eight countries on four continents. The eCO2‐induced stimulation of GY increased with N application rates up to ~200 kg/ha. At higher N application, stimulation of GY by eCO2 stagnated or even declined. This was valid both when the yield stimulation was expressed as the total effect and using per ppm CO2 scaling. GPC was decreased by on average 7% under eCO2 and the magnitude of this effect did not depend on N application rate. The net effect of responses on GY and protein concentration was that eCO2 typically increased and decreased grain protein yield at N application rates below and above ~100 kg/ha respectively. We conclude that a negative effect on wheat GPC seems inevitable under eCO2 and that substantial N application rates may be required to sustain wheat protein yields in a world with rising CO2.  相似文献   

18.
19.
Elevated carbon dioxide (CO2) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO2. This paper examined the mechanism underlying CO2 elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO2 elevation-induced NO accumulation was important for lateral root formation. Elevated CO2 significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO2 elevation-induced NO accumulation. Elevated CO2 enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO2.  相似文献   

20.
Fungal communities play a major role as decomposers in the Earth''s ecosystems. Their community-level responses to elevated CO2 (eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ∼27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2 were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2 increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2 network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4+ availability. This study provided novel insights into how eCO2 shapes soil fungal communities in grassland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号