首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
论滇南西双版纳的森林植被分类   总被引:3,自引:0,他引:3  
朱华 《云南植物研究》2007,29(4):377-387
本文基于多年研究成果的总结,对西双版纳森林植被的分类、主要植被类型及其特征进行了系统归纳,并讨论了它们与世界类似热带森林植被的关系。以群落的生态外貌与结构、种类组成和生境特征相结合作为植被分类的原则和依据,可以将西双版纳的热带森林植被分类为热带雨林、热带季节性湿润林、热带季雨林和热带山地常绿阔叶林四个主要的植被型,包括有至少二十个群系。热带雨林包括热带季节雨林和热带山地(低山)雨林二个植被亚型。热带季节雨林具有与赤道低地热带雨林几乎一样的群落结构和生态外貌特征,是亚洲热带雨林的一个类型,但由于发生在季风热带北缘纬度和海拔的极限条件下,受到季节性干旱和热量不足的影响,在其林冠层中有一定比例的落叶树种存在,大高位芽植物和附生植物较逊色而藤本植物和在叶级谱上的小叶型植物更丰富,这些特征又有别于赤道低地的热带雨林。热带山地雨林是热带雨林的山地亚型,是该地区热带山地较湿润生境的一种森林类型,它在植物区系组成和生态外貌特征上类似于热带亚洲的低山雨林,隶属于广义热带雨林植被型下的低山雨林亚型。热带季节性湿润林分布在石灰岩山坡中、上部,在群落外貌上类似热带山地常绿阔叶林但在植物区系组成上与后者不同,它是石灰岩山地垂直带上的一种植被类型。热带季雨林是分布在该地区开阔河谷盆地及河岸受季风影响强烈的生境的一种热带落叶森林,是介于热带雨林与萨王纳之间的植被类型。热带山地常绿阔叶林(季风常绿阔叶林)是西双版纳的主要山地植被类型,它分布在热带季节雨林带之上偏干的山地生境。它在植物区系组成上不同于该地区的热带季节雨林,在生态外貌特征上亦不同于热带山地雨林,是发育在受地区性季风气候强烈影响的热带山地的一种森林植被类型。  相似文献   

2.
ZHU Hua 《Plant Diversity》2007,29(4):377-387
Xishuangbanna of southern Yunnan is a region of extremely interest to biologists and also a hotspot for biodiversity conservation . It is located in a transitional zone from tropical Southeast Asia to temperate East Asia biogeographically. The present paper reviewed vegetation types of Xishuangbanna and suggested a revised classification system based on theupdated study results over the last two decades . By combining physiognomic and floristic characteristics with ecological performances and habitats , the primary forest vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes , i. e. tropical seasonal rain forest in the lowlands and tropical montane rain forest on higher elevations. The tropical seasonal rain forest in this region shows similar forest profile and physiognomic characteristics to those of equatorial lowland rain forests and is a type of world tropical rain forest. Because of conspicuous similarity on floristic composition , the tropical seasonal rain forest in Xishuangbanna is a type of tropical Asian rain forest . However , since the tropical seasonal rain forest occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in maintaining some deciduous trees in the canopy layer , fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll . It is a type of semi-evergreen rain forest at the northern edge of the tropical zone . The tropical montane rain forest occurs in wet montane habitats and is similar to the lower montane rain forests in equatorial Asia in floristic composition and physiognomy . It is a variety of lower montane rain forests at the northern tropical edges of tropical rain forests . The tropical seasonal moist forest occurs on middle and upper limestone mountains and is similar to the tropical montane evergreen broad-leaved forest of the region in physiognomy, but it differs from the latter in floristic composition. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad- leaved forest is the main vegetation type in mountain areas . It is dominated by the tree species of Fagaceae , Euphorbiaceae , Theaceae and Lauraceae in majority. It differs from the tropical montane rain forests in lack of epiphytes and having more abundant lianas and plants with compound leaves . It is considered to be a distinct vegetation type in the northern margin of mainland southeastern Asia controlling by a strong monsoon climate, based on its floristic and physiognomic characteristics.  相似文献   

3.
Geographical patterns of altitudinal zonation, floristic composition, and structural features of tropical montane rain forests were examined along latitudinal gradients in south and east Asia. On equatorial mountains, the tropical montane rain forests occur above 1000 m. Toward middle latitudes, they come farther down and reach sea level at c. 35° N. Thus, the forests are equivalent to the subtropical rain forests of the latitudinal, horizontal zonation series. They exhibit gradual changes in floristic composition and structure along both altitudinal and latitudinal gradients. On equatorial mountains, they are divided into three types, i.e. tropical lower montane, upper montane, and subalpine forests. The three tree regeneration types, having emergent, sporadic and inverse-J type stem-diameter class frequency distributions, coexist in the lower montane forests, but the upper and subalpine forests display only the inverse-J type species with a few species of the sporadic type. Toward the northern latitudinal limit, the distinction between the three tropical montane forest zones in equatorial mountains becomes less clear. This can be explained by temperature conditions: on equatorial mountains, a temperature sum of 85° C months which controls the upper limit of the lower montane forests, and a coldest month mean temperature of-1° C which controls the evergreen broad-leaved trees, appear at c. 2500 and c. 4000 m respectively. The altitudinal range between 2500 m and 3800 m, which is the upper forest limit, is covered by upper montane and subalpine forests. On the other hand, at the latitudinal northern limit, the tropical upper montane and subalpine forests cannot exist because the above mentioned two temperature conditions occur at nearly the same point. Thus, at the northern latitudinal limit of the tropical montane forests, the three zones of equatorial mountains amalgamate into a single subtropical lowland forest community. This is due to the seasonal temperature climate in middle latitudes in, e.g., central Japan and central China.A part of this paper was presented as an oral presentation at the Vth International Congress of Ecology, Yokohama 23–30.8.1990.  相似文献   

4.
西双版纳森林植被研究   总被引:1,自引:0,他引:1       下载免费PDF全文
西双版纳是世界生物学多样性保护的关键和热点地区,倍受国际学术界的关注。笔者依据30多年来对西双版纳植被的调查,结合植物群落生态学与植物区系地理学研究,并参考世界类似热带植被的研究成果,对西双版纳植被的分类、物种组成、群落生态表现和植物区系特征等作了系统探讨,还进一步分析比较了其与世界类似热带森林植被的关系。结果显示,西双版纳的森林植被共包括32个较为典型的群系,且分属于7个主要的植被型,即热带雨林、热带季节性湿润林、热带季雨林、热带山地(低山)常绿阔叶林、热带棕榈林、暖热性针叶林和竹林。本文对西双版纳植被进行的全面记录和系统归纳,可为科学研究、生物多样性保护和自然保护区的管理提供参考。  相似文献   

5.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

6.
滇南勐宋热带山地雨林的物种多样性与生态学特征   总被引:21,自引:0,他引:21       下载免费PDF全文
 研究了鲜为人知的滇南勐宋地区的原始山地雨林植被, 根据分布生境、群落结构和种类组成特征,可将该山地雨林区分为沟谷和山坡两个类型, 分别定义为八蕊单室茱萸(Mastixia euonymoides)-大萼楠(Phoebe megacalyx)林和云南拟单性木兰(Parachmeria yunnanensis)-云南裸花(Gymnanthes remota)林。该山地雨林的外貌仍以单叶、革质、全缘、中叶为主的常绿中、小高位芽植物组成为特征,层间木质藤本植物仍较丰富,草本高位芽植物和附生植物丰富,但板根和茎花现象少见,属于热带山地垂直带上低山雨林或山地雨林植被类型。与该地区的典型热带季节雨林和赤道热带雨林相比, 勐宋的山地雨林群落中的大、中高位芽植物和藤本高位芽植物比例相对减少, 小、矮高位芽植物和草本高位芽植物比例相对增加,单叶、革质、非全缘叶和小叶比例相对增加,板根现象少见。与中国热带北缘-南亚热带地区(季风)常绿阔叶林比较, 勐宋的山地雨林有较多的附生植物和草本高位芽植物,相对较少的小高位芽植物和矮高位芽植物,小叶比例亦较少,非全缘叶和革质叶比例相对较低。故勐宋山地雨林是滇南热带北缘山地的一种较湿润生境的植被类型, 与所谓的季风常绿阔叶林不同。在物种多样性上,勐宋热带山地雨林在单位面积植物种数上并不比该地区的热带季节雨林低, 物种多样性指数与低丘季节雨林相当,比沟谷季节雨林低, 明显高于季风常绿阔叶林。  相似文献   

7.
Species composition, physiognomy and plant diversity of the less known tropical montane forests in southern Yunnan were studied based on the data from 15 sampling plots in three sites. These forests are mainly dominated by the families Theaceae, Fagaceae, Lauraceae and Euphorbiaceae in floristic composition, and dominated by evergreen phanerophytes with mesophyllous leaves. These forests are similar to lower montane rain forests in equatorial southeastern Asia in floristic composition and altitudinal distributions, but differ in physiognomy by having few epiphytes, but more lianas and more plants with compound leaves. These differences could be due to strongly seasonal climate and so-called mass elevation effect in southern Yunnan. They also differ from the tropical seasonal rain forests at lower altitudes in southern Yunnan by having conspicuously lower species richness, few epiphytes, fewer mega-mesophanerophytes, more abundant micro-nanophanerophytes and hemicryptophytes and more plants with microphyllous leaves. It is suggested that these forests could be termed tropical montane evergreen broad-leaved forests, and be a vegetation type from the northern margin of mainland southeastern Asia controlled by a strongly seasonal climate.  相似文献   

8.
M. Ohsawa 《Plant Ecology》1995,121(1-2):3-10
A new template for mountain vegetation zonation along latitudinal gradients is proposed for examining geographical pattern of various forest attributes in humid monsoon Asia. The contrasting temperature regime in tropical and temperate mountains, i.e., the former is a non-seasonal, temperature-sum controlled environment, and the latter is a seasonal, low temperature limiting environment, leads to different altitudinal patterns of tree height distribution and species richness. In the tropical mountains, both tree height and species richness decrease steeply, and the tree height often stepwise. The decline of tree height and species diversity in the temperate mountains is far less pronounced except near the forest limit. Both trends are explained by their temperature regime.  相似文献   

9.
In the oceans of the tropical and warm-temperate zone (40° N–40° S), only a small number of islands are high enough to show timberline and alpine vegetation. Excluding large islands with a more continental climate, only the following oceanic islands are relevant: Pico (Azores), Madeira, Tenerife, Gran Canaria and La Palma (Canary islands), Fogo (Cape Verde islands), Fernando Poo (Bioko) and Tristan da Cunha in the Atlantic Ocean, Réunion and Grande Comore (Ngazidja) in the Indian Ocean, Yakushima (Japan), Maui and Hawaii (Hawaiian islands), and Mas Afuera (Juan Fernandez islands) in the Pacific Ocean. Timberline and alpine vegetation exist here under a unique combination of a highly oceanic climate and a marked geographic isolation which contrasts with the tropical alpine vegetation in the extended mountains of South America, Africa and Southeast Asia.This review seeks to identify common physiognomic patterns in the high elevation vegetation that exist despite the fact that the islands belong to different floristic regions of the world. Based on the existing literature as well as personal observation, an overview of the elevation, physiognomy and floristics of the forest (and tree) line and the alpine vegetation on 15 island peaks is given.The forest line ecosystems are dominated either by conifers (Canary islands, Yakushima), heath woodland (Azores, Madeira, Réunion, Grande Comore, Fernando Poo) or broad-leaved trees (Hawaiian islands, Juan Fernandez islands, Tristan da Cunha). In the subalpine and alpine belts, dry sclerophyllous scrub occurs on island mountains that are exposed to the trade winds (Canary islands, Cape Verde islands, Hawaiian islands, Réunion, Grande Comore). These peaks are more or less arid above the forest line because a temperature inversion restricts the rise of humid air masses further upslope. In the summit regions of the remaining islands, which are located either in the wet equatorial and monsoonal regions or in the temperate westerly zones without an effective inversion layer, mesic to wet vegetation types (such as grassland, alpine heathland and fern scrub) are found.Compared to mountains at a similar latitude in continental areas, the forest line on the islands is found at 1000 to 2000 m lower elevations. The paper discusses four factors that are thought to contribute to this forest line depression: (1) drought on trade-wind exposed island peaks with stable temperature inversions, (2) the absense of well-adapted high-altitude tree species on isolated islands, (3) immaturity of volcanic soils, and (4) an only small mountain mass effect that influences the vertical temperature gradient.  相似文献   

10.
Gradual changes in vegetation structure and composition are expected to result from continuous environmental change with increasing elevation on mountains. Hence, the occurrence of abrupt or discrete ecotones in vegetation patterns is intriguing and may suggest key controls on community assembly in montane forests. We review tropical montane forest (TMF) zonation patterns focusing on a case study from the Cordillera Central, Hispaniola where a striking discontinuity in forest composition occurs consistently at ~2000 m elevation, with cloud forest below and monodominant pine forest above. We propose that a discontinuity in climatic factors (temperature, humidity) associated with the trade‐wind inversion (TWI) is the primary cause of this and other ecotones in TMFs that occur at a generally consistent elevation. Low humidity, fires and occasional frost above the TWI favor pine over cloud forest species. Fires in the high‐elevation pine forest have repeatedly burned down to the ecotone boundary and extinguished in the cloud forest owing to its low flammability, reinforced by high humidity, cloud immersion and epiphytic bryophyte cover. Small‐scale fire patterns along the ecotone are influenced by topography and where forest structure is impacted by hurricanes and landslides. Analogous patterns are observed worldwide in other TMFs where the TWI is important, high‐elevation fires are frequent, and the flora contains frost‐tolerant species (often of temperate lineage). The response of this and other TMFs to anthropogenic climate change is highly uncertain owing to potentially countervailing effects of different climatic phenomena, including warming temperatures and decreased frost; changes in the TWI, high‐elevation drought or cloudiness; and increased frequency or intensity of hurricanes and El Niño‐Southern Oscillation events.  相似文献   

11.
云南热带雨林具有与东南亚低地热带雨林类似的群落结构、生态外貌特征和物种多样性,是亚洲热带雨林的一个类型。它的植物区系组成中有90%的属和多于80%的种为热带分布成分,其中约40%的属和70%的种为热带亚洲分布型,它含属种较多的优势科和在群落中重要值较大的科也与亚洲热带雨林相似,是亚洲热带雨林和植物区系的热带北缘类型。云南西南部、南部与东南部的热带雨林在群落结构和生态外貌上类似,但在南部与东南部之间有明显的植物区系分异,它们经历了不同的起源背景和演化历程。云南的热带雨林在很大程度上由西南季风维持。喜马拉雅隆升导致西南季风气候形成和加强,在云南热带局部地区产生了湿润气候,发育了热带雨林植被。现在的云南热带雨林里或其分布地区有落叶物种或热带落叶林存在,这不仅是季节性气候的影响,推测在晚第三纪或第四纪更新世云南热带地区曾经历了干旱气候。云南热带雨林的分布主要受制于局部生境,并非地区性气候条件。  相似文献   

12.
望天树林与相近类型植被结构的比较研究   总被引:20,自引:0,他引:20  
  相似文献   

13.
Although natural catastrophic disturbance of tropical forests in Asia can be caused by volcanism and earthquakes climate-induced catastrophes are most widespread. These are prevalent and most diverse at high tropical latitudes because of the single annual dry and wet monsoon. Comparative studies indicate that periodicity of catastrophes may influence forest physiognomy, structure and species richness but long-term research in sample plots suggests that a variety of other factors are locally influential. The importance of accounting for natural catastrophes in silvicultural protocols is stressed, and research priorities identified.  相似文献   

14.
西双版纳热带季节雨林的研究   总被引:26,自引:7,他引:26  
朱华  王洪  李保贵  许再富   《广西植物》1998,18(4):371-384
本文以多个样方的资料分析,从群落综合特征上研究了西双版纳热带季节雨林的特点和类型、物种组成、生活型谱、叶级谱等。根据上层标志树种、群落生态外貌特征和生境把西双版纳的热带季节雨林区分为低丘雨林和沟谷雨林二个群系组,各包括若干群系。低丘雨林中面积最大和最有代表性的群系是大药树、龙果林,而沟谷雨林中最有代表性的群系是番龙眼、千果榄仁林。二者相比,低丘雨林的物种多样性要小一些,附生植物相对少一些,小、矮高位芽植物和小叶、落叶树种比例稍高,在生态上向季雨林和热带山地的常绿阔叶林过渡,有更强的地方代表性。沟谷雨林则更接近典型的湿热带雨林。  相似文献   

15.
This study examines how biophysical site conditions differ in relation to the distribution of forest community types at Mount Kasigau, Kenya, in the Eastern Arc. Topographic measures of elevation, slope, curvature and aspect were derived from a 30‐m DEM and temperature and moisture conditions collected from 19 field data loggers for June 2011–2012 measured seasonal change along the steep elevational gradient (1000 m) from bushland to evergreen forest. Nonparametric statistical analyses then compared topographic and climatic conditions among eight ecologically classified forest types. Steep lapse rates in temperature and available moisture support abrupt changes in canopy physiognomy, but dew points declined with elevation. The Kruskal–Wallis test showed significant differences in the elevation, slope, temperature, dew point and relative humidity conditions among the eight forest types. These biophysical conditions are more discrete for Acacia‐Commiphora bushland and cloud forest but not significantly different between riverine forest, lower montane woodlands I and II and Euphorbia quinquecostata woodland, and between semi‐evergreen woodland and evergreen forest. Biophysical conditions and their influence on the distribution of forest types across a heterogeneous mountain landscape are important to understand and monitor in this unpredictably changing tropical seasonal climate.  相似文献   

16.
朱华 《广西植物》2019,39(1):62-70
大陆东南亚(中南半岛)的植被研究情况鲜为人知,至今仍无系统研究资料。该文依据数次对该地区的野外考察和资料收集,介绍了东南亚植被的研究情况和文献资料以及对该地区主要森林植被的分类和各主要植被类型的特征。大陆东南亚地区在植被分类上包括七个主要的陆生及湿地的森林植被类型:针叶林、针阔混交林、热带山地常绿阔叶林、热带雨林、热带季节性湿润林、热带季风林(季雨林)、干旱刺灌丛/萨王纳植被。其中,针叶林植被型包括温性针叶林和热性针叶林二个植被亚型;针阔混交林包括温性针阔混交林和暖温性针阔混交林二个亚型;热带雨林植被型包括热带低地常绿雨林、热带季节性雨林(热带低地半常绿雨林)、热带山地雨林及泥炭沼泽森林四个植被亚型。该文还对大陆东南亚地区植被研究历史、植被分类系统、类型特征及植物区系组成进行了讨论。  相似文献   

17.
Aim Latitudinal‐ and regional‐scale studies of reptile diversity suggest a predominant temperature effect, unlike many other vertebrate richness patterns which tend to be highly correlated with both temperature and water variables. Here I examine montane gradients in reptile species richness with separate analyses of snakes and lizards from mountains around the world to assess a predominant temperature effect and three additional theories of diversity, including a temperature–water effect, the species–area effect and the mid‐domain effect (MDE). Location Twenty‐five elevational gradients of reptile diversity from temperate, tropical and desert mountains in both hemispheres, spanning 10.3° N to 46.1° N. Methods Elevational gradients in reptile diversity are based on data from the literature. Of the 63 data sets found or compiled, only those with a high, unbiased sampling effort were used in analyses. Twelve predictions and three interactions of diversity theory were tested using nonparametric statistics, linear regressions and multiple regression with the Akaike information criterion (AIC). Results Reptile richness and, individually, snake and lizard richness on mountains followed four distinct patterns: decreasing, low‐elevation plateaus, low‐elevation plateaus with mid‐elevation peaks, and mid‐elevation peaks. Elevational reptile richness was most strongly correlated with temperature. The temperature effect was mediated by precipitation; reptile richness was more strongly tied to temperature on wet gradients than on arid gradients. Area was a secondary factor of importance, whereas the MDE was not strongly associated with reptile diversity on mountains. Main conclusions Reptile diversity patterns on mountains did not follow the predicted temperature–water effect, as all diversity patterns were found on both wet and dry mountains. But the influence of precipitation on the temperature effect most likely reflects reptiles' use of radiant heat sources (sunning opportunities) that are more widespread on arid mountains than wet mountains due to lower humidity, sparser vegetation and less cloud cover across low and intermediate elevations.  相似文献   

18.
Hua Zhu  Min Cao  Huabin Hu 《Biotropica》2006,38(3):310-317
Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical Southeast (SE) Asia to subtropical East Asia, and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The flora of the region consists of a recorded 3336 native seed plant species, belonging to 1140 genera in 197 families, among which 83.5 percent are tropical genera and 32.8 percent are endemic to tropical Asia, suggesting a strong affinity to tropical Asian flora. The vegetation of Xishuangbanna is organized into four forest types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad‐leaved forest, and tropical monsoon forest. The tropical rain forest in Xishuangbanna has the same floristic composition of families and genera as some lowland equatorial rain forests in SE Asia, and is dominated (with a few exceptions) by the same families both in species richness and stem dominance. The exceptions include some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes, and a higher abundance of lianas and microphyllic plants. We consider the tropical rain forest of Xishuangbanna as a type of tropical Asian rain forest, based on their conspicuous similarities in ecological and floristic characteristics.  相似文献   

19.
朱华 《植物生态学报》2005,29(1):170-174
通过分析云南南部的水、热条件及植被分布,讨论了季雨林植被类型及其特征,认为云南南部的季雨林是介于热带雨林与萨王纳之间的,在干季基本上是落叶的一种森林植被类型,符合Schimper (1903)定义的热带季雨林植被,并考虑它是一种生态学意义上的经向地带性植被,与该地区的纬向地带性植被热带季节雨林一起共同构成云南南部的水平地带性植被。在云南南部的石灰岩山坡分布的过去被认为是季雨林的森林植被,尽管也受到季节性干旱的影响而不同程度地具有落叶成分,但它在群落外貌上与典型的季雨林不相同,在植物区系组成上也明显不同于该地区非石灰岩山地的季风常绿阔叶林,在分布上亦是在石灰岩低山沟谷的热带季节性雨林水平地带性植被带之上,根据其生态外貌、植物区系组成和生境特点,我们建议用“热带季节性湿润林”来称呼这类石灰岩山地森林类型,在性质上属东南亚热带北缘石灰岩山地垂直带上的一种植被类型。  相似文献   

20.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号