首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segregation of roots is frequently observed in competing root systems. However, recently, intensified root growth in response to a neighbouring plant has been described in pot experiments [Gersani M, Brown J S, O'Brien E E, Maina G M and Abramsky Z 2001. J. Ecol. 89, 660–669]. This paper examines whether intense root growth towards a neighbour (aggregation) plays a role in competitive interactions between plant species from open nutrient-poor mid-European sand ecosystems. In a controlled field-competition experiment, root distribution patterns of intra- and interspecific pairs as well as single control plants of Corynephorus canescens, Festuca psammophila, Hieracium pilosella, Hypochoeris radicata and Conyza canadensis were investigated after one growing season. Under intraspecific competition plants tended to segregate their root systems, while under interspecific competition most species tended to aggregate roots towards their neighbours even at the expense of root development at the opposite competition-free side of the target. Preference of a root aggregation strategy over the occupation of competition-free soil in interspecific competition emphasizes the importance of contesting between individuals in relation to mere resource acquisition. It is suggested that in the presence of a competitor the plants might use root aggregation as a defensive reaction to maintain a strong competitive response and exclusive access to the resources of already occupied soil volumes.  相似文献   

2.
AimHow plants cope with increases in population density via root plasticity is not well documented, although abiotic environments and plant ontogeny may have important roles in determining root response to density. To investigate how plant root plasticity in response to density varies with soil conditions and growth stages, we conducted a field experiment with an annual herbaceous species (Abutilon theophrasti).MethodsPlants were grown at low, medium, and high densities (13.4, 36.0, and 121.0 plants m−2, respectively), under fertile and infertile soil conditions, and a series of root traits were measured after 30, 50, and 70 days.ResultsRoot allocation increased, decreased, or canalized in response to density, depending on soil conditions and stages of plant growth, indicating the complex effects of population density, including both competitive and facilitative effects.Main conclusionsRoot allocation was promoted by neighbor roots at early stages and in abundant resource availability, due to low‐to‐moderate belowground interactions among smaller plants, leading to facilitation. As plants grew, competition intensified and infertile soil aggravated belowground competition, leading to decreased root allocation in response to density. Root growth may be more likely restricted horizontally rather than vertically by the presence of neighbor, suggesting a spatial orientation effect in their responses to density. We emphasized the importance of considering effects of abiotic conditions and plant growth stages in elucidating the complexity of density effects on root traits.  相似文献   

3.
Plant species can respond to small scale soil nutrient heterogeneityby proliferating roots or increasing nutrient uptake kineticsin nutrient-rich patches. Because root response to heterogeneitydiffers among species, it has been suggested that the distributionof soil resources could influence the outcome of interspecificcompetition. However, studies testing how plants respond toheterogeneity in the presence of neighbours are lacking. Inthis study, individuals of two species,Phytolacca americanaL.andAmbrosia artemisiifoliaL. were grown individually and incombination in soils with either a homogeneous or heterogeneousnutrient distribution. Above-ground biomass of individuallygrown plants of both species was greater when fertilizer waslocated in a single patch than when the same amount of fertilizerwas distributed evenly throughout the soil. Additionally, bothspecies proliferated roots in high-nutrient patches.A. artemisiifoliaexhibitedlarger root:shoot ratios, increased nitrogen depletion fromnutrient patches, and a higher growth rate thanP. americana,suggestingA. artemisiifoliais better suited to find and rapidlyexploit nutrient patches. In contrast to individually grownplants, soil nutrient distribution had no effect on final above-groundplant biomass for either species when grown with neighbours,even though roots were still concentrated in high nutrient patches.This study demonstrates that increased growth of isolated plantsas a consequence of localized soil nutrients is not necessarilyan indication that heterogeneity will affect interspecific encounters.In fact, despite a significant below-ground response, soil nutrientheterogeneity was inconsequential to above-ground performancewhen plants were grown with neighbours.Copyright 1999 Annalsof Botany Company Phytolacca americana, pokeweed,Ambrosia artemisiifolia, ragweed, nutrient heterogeneity, root proliferation, plasticity, foraging, nutrient patches.  相似文献   

4.
Frew  Adam  Powell  Jeff R.  Johnson  Scott N. 《Plant and Soil》2020,447(1-2):463-473
Aims

Arbuscular mycorrhizal (AM) fungi associate with the majority of terrestrial plants, influencing their growth, nutrient uptake and defence chemistry. Consequently, AM fungi can significantly impact plant-herbivore interactions, yet surprisingly few studies have investigated how AM fungi affect plant responses to root herbivores. This study aimed to investigate how AM fungi affect plant tolerance mechanisms to belowground herbivory.

Methods

We examined how AM fungi affect plant (Saccharum spp. hybrid) growth, nutrient dynamics and secondary chemistry (phenolics) in response to attack from a root-feeding insect (Dermolepida albohirtum).

Results

Root herbivory reduced root mass by almost 27%. In response, plants augmented investment in aboveground biomass by 25%, as well as increasing carbon concentrations. The AM fungi increased aboveground biomass, phosphorus and carbon. Meanwhile, root herbivory increased foliar phenolics by 31% in mycorrhizal plants, and increased arbuscular colonisation of roots by 75% overall. AM fungi also decreased herbivore performance, potentially via increasing root silicon concentrations.

Conclusions

Our results suggest that AM fungi may be able to augment plant tolerance to root herbivory via resource allocation aboveground and, at the same time, enhance plant root resistance by increasing root silicon. The ability of AM fungi to facilitate resource allocation aboveground in this way may be a more widespread strategy for plants to cope with belowground herbivory.

  相似文献   

5.
We were interested in the role of arbuscular mycorrhiza (AM) in the competition between plants of different sizes. A pot experiment of factorial design was established, in which AM root colonization and competition were used as treatments. Five-week-old Prunella vulgaris seedlings were chosen as target plants (i.e. plants whose response to competition was studied) and the following (13 replicates of each) were used as neighbours: (1) a large, 10-week-old P. vulgaris, (2) two P. vulgaris seedlings, and (3) a large, 10-week-old Fragaria vesca. In the experiment where small neighbours were grown together with small target plants, competition did not reduce target plant weight significantly, compared to the other two treatments. The competitive effects of large neighbours were significant, regardless of species (both older neighbours reduced the weights of target plants similarly), but there was a clear difference between intra- and interspecific competition when plants were mycorrhizal. In intraspecific competition with a large neighbour, the target plant shoot weight was reduced 24% when inoculated with AM. Thus, AM amplified rather than balanced intraspecific competition. In interspecific competition with old F. vesca, the shoot weights of target plants were 22% greater when inoculated with AM than when non-mycorrhizal. The results showed that, for given soil condition, AM might increase species diversity by increasing competitive intraspecific suppression and decreasing the interspecific suppression of small plants by larger neighbours.  相似文献   

6.
Victor O. Sadras 《Oecologia》1997,109(3):427-432
In indeterminate plant species, the rate of vegetative growth usually declines during the stage of active reproductive growth. Fruit shedding, as induced by insect herbivores, could counteract this decline. Due to the relative increase in vegetative growth, plants that have suffered reproductive damage could be better able to intercept light and acquire soil resources than undamaged plants. If so, plants with damaged neighbours might grow less than their counterparts with smaller, undamaged neighbours. This hypothesis was tested in high- and low-density cotton crops subjected to three treatments: (i) undamaged controls; (ii) uniformly damaged, in which all plants were damaged; (iii) non-uniformly damaged, in which every second plant was damaged. Damaged plants had their flowerbuds and young fruits manually removed at 85 days after sowing to simulate shedding as induced by Helicoverpa spp. (Lepidoptera) and mirid bugs (Hemiptera). As expected, damaged plants had greater leaf area and more vegetative dry matter than undamaged ones. This was most pronounced at high plant density. Neighbour status did not affect vegetative growth but it had a substantial, asymmetric effect on the reproductive growth of target plants. Damaged targets recovered to the level of undamaged controls in terms of total fruit number but had a large reduction in the mass of mature fruit due to the limited time available for recovery. The effect of neighbour status, if any, on the production of mature fruit in damaged targets was overridden by the limit imposed to recovery by the duration of the growing season. In contrast, neighbour status affected the production of mature fruit of undamaged targets: undamaged targets with damaged neighbours had 34% (low density) and 56% (high density) less mature fruit mass than their counterparts with undamaged neighbours. This was because (i) reproductive allocation and (ii) the proportion of total fruit that reached maturity in target plants declined with increasing neighbour interference. Most studies dealing with changes in competitive relationships among plants subjected to differential herbivory have shown how undamaged plants may benefit from herbivores that feed on their neighbours. This study shows that differential reproductive damage can cause the opposite effect, as undamaged plants may have a significant reduction in productivity due to the influence of neighbours whose vegetative growth was stimulated by the loss of reproductive organs. Received: 2 June 1996 / Accepted: 8 September 1996  相似文献   

7.
Rhizobial symbiosis is known to increase the nitrogen availability in the rhizosphere of legumes. Therefore, it has been hypothesized that other plants’ roots should forage towards legume neighbours, but avoid non-legume neighbours. Yet, root distribution responding to legume plants as opposed to non-legumes has not yet been rigorously tested and might well be subject to integration of multiple environmental cues.In this study, wedevised an outdoor mesocosm experiment to examine root distributions of the two plant species Pilosella officinarum and Arenaria serpyllifolia in a two-factorial design. While one factor was ‘neighbour identity’, where plants were exposed to different legume or non-legume neighbours, the other factor was ‘nitrogen supply’. In the latter the nutrient-poor soil was supplemented with either nitrogen-free or with nitrogen-containing fertilizer.Unexpectedly, of all treatments that included a legume neighbour (eight different species or factor combinations), we found merely one case of root aggregation towards a legume neighbour (P. officinarum towards Medicago minima under nitrogen-fertilized conditions). In this very treatment, also P. officinarum root–shoot allocation was strongly increased, indicating that neighbour recognition is coupled with a contesting strategy.Considering the various response modes of the tested species towards the different legume and non-legume neighbours, we can conclude that roots integrate information on neighbour identity and resource availability in a complex manner. Especially the integration of neighbour identity in root decisions must be a vital aptitude for plants to cope with their complex biotic and abiotic environment in the field.  相似文献   

8.
Abstract

Enriched nutrient patches within natural soil represent an important source of nutrients for tree growth. In the present study, pot experiments in a heterogeneous nutrient environment were conducted to investigate the influence of light conditions and interspecific competition on the root foraging traits and seedling growth of Pinus massoniana and Schima superba. The root foraging scale and the whole-seedling biomass of both species were decreased by shading. The result of this treatment was a lower sensitivity to nutrient heterogeneity in plants that underwent the shading treatment than in plants that were exposed to full-light conditions. The above-ground biomass and whole-seedling biomass of S. superba were not affected by competition with P. massoniana. In contrast, the above-ground biomass and whole-seedling biomass of P. massoniana were negatively affected by competition with S. superba. The more rapid rate of root extension and the more efficient resource uptake of S.superba appear to explain this effect. The species-specific patterns of the influence of environmental factors on foraging ability and seedling growth should be given thorough consideration and should be applied to afforestation and to the management of tree plantations.  相似文献   

9.
Question: What are the mechanisms by which fire reduces competition for both a short‐lived and a long‐lived species in old‐growth ground‐cover plant communities of wet pine savannas (originally Pinus palustris, replaced by P. elliottii)? Location: Outer coastal plain of southeastern Mississippi, USA. Methods: I reviewed previous competition experiments and proposed a new hypothesis to explain the relationship between fire, competition, and species co‐existence in wet longleaf pine savannas. The first study is about growth and seedling emergence responses of a short‐lived carnivorous plant, Drosera capillaris, to reduction in below‐ground competition and above‐ plus below‐ground competition. The second study deals with growth and survival responses of a long‐lived perennial carnivorous plant, Sarracenia alata, to neighbour removal and prey‐exclusion to determine if a reduction in nutrient supply increased the intensity of competition in this nutrient‐poor system. Results: Fire increased seedling emergence of the short‐lived species by reducing above‐ground competition through the destruction of above‐ground parts of plants and the combustion of associated litter. Prey exclusion did not increase competitive effects of neighbours on the long‐lived species. However, because the experiment was conducted in a year without fire, shade reduced nutrient demand, which may have obviated competition for soil nutrients between Sarracenia alata and its neighbours. Conclusion: Repeated fires likely interact with interspecific differences in nutrient uptake to simultaneously reduce both above‐ground competition and competition for nutrients in old‐growth ground cover communities in pine savannas. Restoration practitioners should consider the possibility that the composition of the plant community is just as important as fire in ensuring that frequent fires maintain species diversity.  相似文献   

10.
A field study was conducted to determine the effects of neighbour root exclusion and gap size on the seedling emergence and early growth of Bromus inermis. Seeds of B. inermis were added to artificially created gaps in an improved shortgrass steppe in northern China. Neighbour root exclusion was accomplished using PVC tubes sunk in the soil of gaps. Emergence and survival of seedlings were greater in all gaps than in the control (0-cm diameter), but better growth performance (height of seedling, leaves, tillers and dry weight per seedling) was observed only in large gaps (20- and 40-cm diameter) with neighbour root present and gaps without neighbour root presence. Seedling growth performance was improved by reducing root and shoot competition. Neighbour root exclusion provided a favourable environment for seedling establishment. Differences between gaps in light levels and topsoil temperature can explain the patterns of germination. These results confirm that B. inermis is a gap-enhanced species. Our study strongly suggests that asymmetric competition by adult neighbour plants negatively influences the establishment of B. inermis.  相似文献   

11.
Plants sense neighbours even before these cause a decrease in photosynthetic light availability. Light reflected by proximate neighbours signals a plant to adjust growth and development, in order to avoid suppression by neighbour plants. These phenotypic changes are known as the shade‐avoidance syndrome and include enhanced shoot elongation and more upright‐positioned leaves. In the present study it was shown that these shade‐avoidance traits in tobacco (Nicotiana tabacum) are also induced by low concentrations of ethylene. Furthermore, it was shown that transgenic plants, insensitive to ethylene, have a delayed appearance of shade‐avoidance traits. The increase in both leaf angles and stem elongation in response to neighbours are delayed in ethylene‐insensitive plants. These data show that ethylene is an important component in the regulation of neighbour‐induced, shade‐avoidance responses. Consequently, ethylene‐insensitive plants lose competition with wild‐type neighbours, demonstrating that sensing of ethylene is required for a plant to successfully compete for light.  相似文献   

12.
Root hairs confer a competitive advantage under low phosphorus availability   总被引:23,自引:3,他引:20  
Bates  Terence R.  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):243-250
Root hairs are presumably important in the acquisition of immobile soil resources such as phosphorus. The density and length of root hairs vary substantially within and between species, and are highly regulated by soil phosphorus availability, which suggests that at high nutrient availability, root hairs may have a neutral or negative impact on fitness. We used a root-hairless mutant of the small herbaceous dicot Arabidopsis thaliana to assess the effect of root hairs on plant competition under contrasting phosphorus regimes. Wildtype plants were grown with hairless plants in a replacement series design at high (60 m phosphate in soil solution) and low (1 m phosphate in soil solution) phosphorus availability. At high phosphorus availability, wildtype and mutant plants were equal in growth, phosphorus acquisition, fecundity and relative crowding coefficient (RCC). At low phosphorus availability, hairless plants accumulated less biomass and phosphorus, and produced less seed when planted with wildtype plants. Wildtype plants were unaffected by the presence of hairless plants in mixed genotype plantings. Wildtype plants had RCC values greater than one while hairless plants had RCC values less than one. We conclude that root hairs increase the competitiveness of plants under low phosphorus availability but do not reduce growth or competitiveness under high phosphorus availability.  相似文献   

13.
疏叶骆驼刺根系对土壤异质性和种间竞争的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来, 植物根系对土壤异质性的响应和植物根系之间的相互作用一直是研究的热点。过去的研究主要是针对一年生短命植物进行的, 而且多是在人工控制的温室条件下进行的。而对于多年生植物根系对养分异质性和竞争的综合作用研究很少。该文对塔里木盆地南缘多年生植物疏叶骆驼刺(Alhagi sparsifolia)根系生长对养分异质性和竞争条件的响应途径与适应策略进行了研究, 结果表明: (1)在无竞争的条件下, 疏叶骆驼刺根系优先向空间大的地方生长, 即使另一侧有养分斑块存在, 其根系也向着空间大的一侧生长; (2)在有竞争的条件下, 疏叶骆驼刺根系生长依然是优先占领空间大的一侧, 但是竞争者的存在抑制了疏叶骆驼刺的生长, 导致其枝叶生物量和根系生物量都明显减少(p < 0.01), 而养分斑块的存在促进了疏叶骆驼刺根系的生长; (3)疏叶骆驼刺根系的生长不仅需要养分, 也需要足够的空间, 空间比养分更重要; (4)有竞争者存在的时候, 两株植物的根系都先长向靠近竞争者一侧的空间, 即先占据“共有空间”。研究结果对理解植物根系觅食行为和植物对环境的适应策略有重要意义。  相似文献   

14.
A field experiment encompassing both neighbour- and nutrient-manipulations was conducted in a nutrient-impoverished old-field habitat to investigate how the intensity of plant competition was affected by soil nutrient level. Three perennial grasses were used as target species: Agropyron repens, Poa pratensis and Phleum pratense. Neighbour manipulations involved the removal (through herbicide application) of all neighbouring vegetation within a 20 cm or 40 cm radius around target plants. Target performance was measured under five levels of added nutrients (N-P-K) in both the neighbour-removal plots and in non-removal (control) plots. Both neighbour and nutrient manipulations had a highly significant effect on both biomass and tiller production but the interaction between these treatments was generally insignificant. Below-ground/above-ground biomass quotient was affected only by neighbour manipulations and was greatest in the control plots (with no neighbours removed) for all three species. The suppressive effect of neighbours was not markedly affected by nutrient level. However, yield suppression showed a significant decreasing trend with increasing nutrient level for biomass production in Agropyron and an increasing trend for tiller production in Phleum. For Poa, there was no trend in the intensity of competition across nutrient level. The results suggest that the general intensity of competition within this community neither increases nor decreases with increasing nutrient level. Rather, coexisting species appear to respond individually in terms of the intensity of competition that they experience. These results conflict with predictions from the triangular C-S-R model of plant strategies. However, they are consistent with a recently modified ‘habitat templet’ model for vegetation.  相似文献   

15.
《Plant Ecology & Diversity》2013,6(2-3):115-126
Background: Understanding the processes that determine community assembly and their dynamics is a central issue in ecology. The analysis of functional diversity can improve our understanding of these dynamics by identifying community assembly processes.

Aims: We studied the effect of environment–community covariations on both functional diversity and functional structure of xerophytic shrub communities for inferring the community assembly processes shaping this vegetation type.

Methods: Functional diversity was quantified using (1) community-weighted mean of the studied traits, (2) functional groups, defined using Ward’s hierarchical agglomerative clustering method and (3) Rao’s quadratic entropy. Relationships between functional diversity and environmental gradients were identified by Spearman correlations and modelled using generalised additive models.

Results: Variations in community composition and functional diversity correlated with soil nutrient availability and aridity. Increasing nutrient availability resulted in both greater average plant height and higher abundance of plants with green photosynthetic organ colour, whereas the abundance of nanophanerophytes increases with aridity.

Conclusions: The species composition and trait structure of the studied Mediterranean xerophytic shrub communities varies along nutrient and aridity gradients. This supports the importance of environmental filters for the local assembly and dynamics of these inland dune communities.  相似文献   

16.
Abstract

Plant roots are responsible for the acquisition of nutrients and water from the soil and have an important role in plant response to soil stress conditions. The direction of root growth is gravitropic in general. Gravitropic responses have been widely studied; however, studies about other root tropisms are scarce. Soil salinity is a major environmental response factor for plants, sensed by the roots and affecting the whole plant. Our observations on root architecture of Kochia (Bassia indica) indicated that salinity may cue tropism of part of the roots toward increasing salt concentrations. We termed this phenomenon “positive halotropism”. It was observed that Kochia individuals in the field developed horizontal roots, originating from the main tap root, which was growing toward saline regions in the soil. Under controlled conditions in greenhouse experiments, Kochia plants were grown in pots with artificial soil salinity gradients, achieved by irrigation with saline and fresh water. It was shown that plants grown in low‐salt areas developed a major horizontal root toward the higher salt concentration region in the gradient. In regions of high salinity and in the absence of a salinity gradient, roots grew vertically without a major horizontal root. The novel finding of “positive halotropism” is discussed.  相似文献   

17.
Plant competition belowground generally appears to be size-symmetric, i.e. larger plants only obtain a share of belowground resources proportional to their size, and therefore do not suppress smaller individuals. The experimental evidence for size-symmetric belowground competition comes primarily from experiments with homogenous soil conditions. It has been hypothesized that the presence of high nutrient patches that can be pre-empted by larger plants can make competition belowground size-asymmetric. We tested this hypothesis by growing Triticum aestivum individuals singly and in pairs in containers with aboveground dividers so that competition occurred only belowground. Plants grew in either a homogenous soil mixture, or in the same mixture with a band of enriched soil between them. Initial size differences were generated by a seven day difference in sowing date. There was no evidence of size-asymmetric competition with or without soil heterogeneity. Large plants did not have a disproportionate effect on smaller plants, nor did they perform disproportionately better when paired with a small neighbor. Our results suggest that in heterogeneous soil conditions, roots of larger plants that reach nutrient patches first are not able to prevent roots of smaller plants that arrive later from obtaining resources from the patch. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Defoliation through herbivory is well known to affect target plants and their associated belowground properties, but the response of plants and their soil environment to defoliation of their neighbours is less well understood. We performed a controlled shade‐house experiment involving three plant species that colonize New Zealand floodplains during primary succession, i.e. a palatable N2‐fixing shrub (Carmichaelia odorata), a palatable deciduous small tree (Fuchsia excorticata) and a less palatable evergreen tree (Weinmannia racemosa). All species were grown in large pots for 40 months both singly and in two species pairs, and either one or both of the species grown in pairs were clipped to simulate herbivory. Responses of growth and foliar nutrient status to clipping varied strongly among species, with Carmichaelia having the largest response and Fuchsia having the smallest. Carmichaelia also enhanced soil microbial biomass and activity, and foliar N concentrations of Weinmannia. However, this did not translate to a net positive effect; instead Carmichaelia competitively reduced growth and foliar P concentrations of both other species. Most effects of Carmichaelia on the soil microflora, and growth and nutrient status of its neighbours, disappeared when Carmichaelia was clipped. Further, the effect of clipping Carmichaelia had a stronger impact on growth, soil activity and nutrient status of the other two species than did the clipping of those species. These results contradict expectations that N2‐fixing plants should promote growth of other species in pioneer communities or that defoliation of N2‐fixers exacerbate positive effects; in our study, defoliation of Carmichaelia merely mitigated the negative effects that it had on other species. They also suggest that interplay of competition and differential herbivory among coexisting plants has important implications for soil microflora and processes, relative nutrient acquisition and stoichiometry of coexisting plant species, and potentially plant community development.  相似文献   

19.
Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO2. To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C3 dicot with a deep tap root andSetaria faberii, a C4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO2-induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO2-induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO2 responses of real-world plants.  相似文献   

20.
Summary Four species of grassland plant, Plantago lanceolata, Holcus lanatus, Lolium perenne and Rumex acetosa, were grown as monocultures and mixtures in pots of nutrient poor soil in a glasshouse for 8 months. There were four plants per pot and these were arranged in two competition modes: either root and shoot interactions were permitted, or only roots allowed to interact by using above-ground partitions. Time of introduction of seedlings was varied to give a range of plant size ratios at the start of the experiment. The factorial design catered for all combinations of species, competition modes and planting times, replicated in four blocks. The shoots were clipped at a fixed height at each of five harvests. Rumex grew badly and was mostly omitted from analysis of the data.By (i) following the change in the relationship of clip dry weights against planting time with successive harvests, (ii) plotting the change in the logarithm of the ratio of cumulative clip dry weights with time and (iii) the use of de Wit logarithmic ratio plots it was demonstrated that each monoculture and mixture combination's ratios of plant weights converged towards stable equilibrium values. Three hypotheses are put forward to explain why in monocultures a smaller plant was at a competitive advantage relative to a larger neighbour and was not suppressed in its growth by the latter. In mixtures this plant size effect was superimposed to different extents on the relative aggressiveness of the species considered. It was concluded that in a nutrient poor soil, when competition for light was low, root interactions can promote the co-existence of neighbouring plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号