首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Background: Plant communities are usually characterised by species composition and abundance, but also underlie a multitude of complex interactions that we have only recently started unveiling. Yet, we are still far from understanding ecological and evolutionary processes shaping the network-level organisation of plant diversity, and to what extent these processes are specific to certain spatial scales or environments.

Aims: Understanding the systemic mechanisms of plant–plant network assembly and their consequences for diversity patterns.

Methods: We review recent methods and results of plant–plant networks.

Results: We synthetize how plant–plant networks can help us to: (a) assess how competition and facilitation may balance each other through the network; (b) analyse the role of plant–plant interactions beyond pairwise competition in structuring plant communities, and (c) forecast the ecological implications of complex species dependencies. We discuss pros and cons, assumptions and limitations of different approaches used for inferring plant–plant networks.

Conclusions: We propose novel opportunities for advancing plant ecology by using ecological networks that encompass different ecological levels and spatio-temporal scales, and incorporate more biological information. Embracing networks of interactions among plants can shed new light on mechanisms driving evolution and ecosystem functioning, helping us to mitigate diversity loss.  相似文献   

2.
Abstract

Certain aerobic, Gram-negative bacteria, including the epiphytic plant pathogen, Pseudomonas syringae, possess a membrane protein that enables them to nucleate crystallization in supercooled water. Currently, these ice-nucleating (IN) bacteria are being used in snow making and have potential applications in the production and texturing of frozen foods, and as a replacement of silver iodide in cloud seeding. A negative aspect of these IN bacteria is frost damage to plant surfaces. Thus, of the various types of biological ice nucleators, bacteria have been the subject of most research and also appear relevant to the anticipated practical uses. The intent of this review is to explain the identification and ecology of the ice-nucleating bacteria, as well as to discuss aspects of molecular biology related to ice nucleation and consider existing and potential applications of this unique phenomenon.  相似文献   

3.
ABSTRACT:?

The subject area of this review provides extraordinary challenges and opportunities. The challenges relate to the fact that the integration of various fields such as microbiology, biochemistry, plant physiology, eukaryotic as well as bacterial genetics, and applied plant sciences are required to assess the disposition of rice, an alien host, for establishing such a unique phenomenon as biological nitrogen fixation. The opportunities signify that, if successful, the breakthrough will have a significant impact on the global economy and will help improve the environment. This review highlights the literature related to the area of legume-rhizobia interactions, particularly those aspects whose understanding is of particular interest in the perspective of rice. This review also discusses the progress achieved so far in this area of rice research and the possibility of built-in nitrogen fixation in rice in the future. However, it is to be borne in mind that such research does not ensure any success at this point. It provides a unique opportunity to broaden our knowledge and understanding about many aspects of plant growth regulation in general.  相似文献   

4.
ABSTRACT

Background: Tropical mountain ecosystems of the Northern Andes have long fascinated researchers because of the unique conditions associated with cold climates in equatorial latitudes. More than six decades have elapsed since the beginning of systematic ecological research in the Venezuelan páramos, making them one of the best-studied tropical alpine regions in the world.

Aims: We review the conceptual development and state of the art of ecological research in the Venezuelan páramos, with emphasis on environmental and plant ecology research, presenting a general framework for the studies included in this special issue.

Methods: We provide a historical sketch of the periods that have marked ecological studies in the Venezuelan páramos. Then, we synthesise research on environmental drivers, plant population and community ecology, ecosystem functioning, the response of the páramo to climate change and human disturbance; we finally consider agroecology and conservation.

Results and conclusions: This review demonstrates the significant contributions made to alpine ecology in key areas such as biodiversity/ecosystem function changes during succession, nutrient cycling, species interactions and socio-ecological research. We indicate the need to develop a more integrated view of the links between evolutionary processes, functional diversity, community dynamics and ecosystem services both in natural and human-impacted areas.  相似文献   

5.
Abstract

Coevolution has been defined as the reciprocal genetic change in interacting species owing to natural selection imposed by each on the other. The process of coevolution between plants and the surrounding biota – including viruses, fungi, bacteria, nematodes, insects, and mammals – is considered by many biologists to have generated much of the earth's biological diversity. While much of the discussion on plant coevolution focuses on single plant–enemy interactions, a wide array of other micro and macro coevolutive processes co-occur in the same individual plant, posing the question whether we should talk about plant coevolutions. In this review article, I begin by briefly discussing the framework of coevolution theory and explore the complexities of studying coevolution in natural conditions. Then I analyze the difference between plants, microbes and animal coevolution, by exploring the above- and below-ground behaviors.  相似文献   

6.
Soilborne root diseases caused by plant pathogenic Pythium species cause serious losses in a number of agricultural production systems, which has led to a considerable effort devoted to the development of biological agents for disease control. In this article we review information on the ecology and biological control of these pathogens with the premise that a clear understanding of the ecology of the pathogen will assist in the development of efficacious biocontrol agents. The lifecycles of the pathogens and etiology of host infection also are reviewed, as are epidemiological concepts of inoculum-disease relationships and the influence of environmental factors on pathogen aggressiveness and host susceptibility. A number of fungal and bacterial biocontrol agents are discussed and parallels between their ecology and that of the target pathogens highlighted. The mechanisms by which these microbial agents suppress diseases caused by Pythium spp., such as interference with pathogen survival, disruption of the process of plant infection, and induced host resistance, are evaluated. The possibilities for enhancement of efficacy of specific biological control agents by genetic manipulation or deployment tactics are discussed, as are conceptual suggestions for consideration when developing screening programs for antagonists.  相似文献   

7.
Abstract

In this review, I discuss our recent work on the possible role of the lipid phase of the target cell membrane in mediating receptor subtype selectivity of peptides.  相似文献   

8.
ABSTRACT

Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray.

Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology.

Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.  相似文献   

9.
Abstract

Fluorescent Pseudomonads belong to plant Growth Promoting Rhizobacteria (PGPR), the important group of bacteria that play a major role in the plant growth promotion, induced systemic resistance, biological control of pathogens etc. Many strains of Pseudomonas fluorescens are known to enhance plant growth promotion and reduce severity of various diseases. The efficacy of bacterial antagonists in controlling fungal diseases was often better as alone, and sometimes in combination with fungicides. The present review refers to occurrence, distribution, mechanism, growth requirements of P. fluorescens and diseases controlled by the bacterial antagonist in different agricultural and horticultural crops were discussed. The literature in this review helps in future research programmes that aim to promote P. fluorescens as a potential bio-pesticide for augmentative biological control of many diseases of agriculture and horticultural importance.  相似文献   

10.
Arbuscular mycorrhizae and terrestrial ecosystem processes   总被引:2,自引:0,他引:2  
Arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota) are ubiquitous in terrestrial ecosystems. Despite their acknowledged importance in ecology, most research on AMF has focused on effects on individual plant hosts, with more recent efforts aimed at the level of the plant community. Research at the ecosystem level is less prominent, but potentially very promising. Numerous human‐induced disturbances (including global change and agro‐ecosystem management) impinge on AMF functioning; hence study of this symbiosis from the ecosystem perspective seems timely and crucial. In this paper, I discuss four (interacting) routes via which AMF can influence ecosystem processes. These include indirect pathways (through changes in plant and soil microbial community composition), and direct pathways (effects on host physiology and resource capture, and direct mycelium effects). I use the case study of carbon cycling to illustrate the potentially pervasive influence of AMF on ecosystem processes. A limited amount of published research on AMF ecology is suited for direct integration into ecosystem studies (because of scale mismatch or ill‐adaptation to the ‘pools and flux’ paradigm of ecosystem ecology); I finish with an assessment of the tools (experimental designs, response variables) available for studying mycorrhizae at the ecosystem scale.  相似文献   

11.
It is increasingly recognized that the ecology of communities and evolution of species within communities are interdependent, and researchers have been paying attention to this rapidly emerging field of research, i.e., through studies on eco-evolutionary dynamics. Most of the studies on eco-evolutionary dynamics have been concerned with direct trophic interactions. However, community ecologists have shown that trait-mediated indirect effects play an important role in shaping the structure of natural communities. In particular, in terrestrial plant–insect systems, indirect effects mediated through herbivore-induced plant responses are common and have a great impact on the structure of herbivore communities. This review describes eco-evolutionary dynamics in herbivorous insect communities, and specifically focuses on the key role of herbivore-induced plant responses in eco-evolutionary dynamics. First, I review studies on the evolution of herbivore traits relevant to plant induction and discuss evolution in a community context mediated by induced plant responses. Second, I highlight how intraspecific genetic variation or evolution in herbivore traits can influence herbivore community structure. Finally, I propose the hypothetical model that induced plant responses supports eco-evolutionary feedback in herbivore communities. In this review, I argue that the application of the indirect interaction web approaches into studies on eco-evolutionary will provide profound insights into understanding of mechanisms of the generation and maintenance of biodiversity.  相似文献   

12.
Plants are subjected to environmental gradients and may encounter various herbivores, leading to geographic variation in defensive traits. The present review highlights that biological invasions are remarkable natural experiments for studying geographic variation in plant–herbivore interaction and tracking temporal dynamics in plant defense in response to environmental changes. Studies from this viewpoint can challenge various general topics in plant ecology, including the evolution of plant defense and indirect interactions among plants. First, I provide a brief overview on how the introduction of exotic herbivores drives rapid evolution after the establishment of exotic plants and its impacts on native plants. Second, I present a series of case studies investigating the patterns and mechanisms of geographic variation in the interaction between Solidago altissima and Corythucha marmorata (lace bug) in the native range in the United States and the introduced range in Japan. By combining biogeographical and experimental approaches, my collaborators and I unraveled the temporal dynamics of S. altissima's resistance to lace bugs and explored the drivers of differentiation in resistance between native and introduced ranges. These studies provide new insight into the geographic variation in exotic plant–herbivore interaction by unraveling the mechanisms and the temporal scale that cause the variation. These findings are vital not only for predicting invasiveness of exotic plants but also for understanding the evolution of plant–herbivore interaction in community contexts and under climate change.  相似文献   

13.
Understanding mechanisms to predict changes in plant and animal communities is a key challenge in ecology. The need to transfer knowledge gained from single species to a more generalized approach has led to the development of categorization systems where species’ similarities in life strategies and traits are classified into ecological groups (EGs) like functional groups/types or guilds. While approaches in plant ecology undergo a steady improvement and refinement of methodologies, progression in animal ecology is lagging behind. With this review, we aim to initiate a further development of functional classification systems in animal ecology, comparable to recent developments in plant ecology. We here (i) give an overview of terms and definitions of EGs in animal ecology, (ii) discuss existing classification systems, methods and application areas of EGs (focusing on terrestrial vertebrates), and (iii) provide a “roadmap towards an animal functional type approach” for improving the application of EGs and classifications in animal ecology. We found that an animal functional type approach requires: (i) the identification of core traits describing species’ dependency on their habitat and life history traits, (ii) an optimization of trait selection by clustering traits into hierarchies, (iii) the assessment ofsoft traits” as substitute for hardly measurable traits, e.g. body size for dispersal ability, and (iv) testing of delineated groups for validation including experiments.  相似文献   

14.
《Phytomedicine》2014,21(12):1534-1542
PurposeBergenia crassifolia (L.) Fritsch, a species in the Bergenia genus belongs to the family Saxifragaceae, is valuated for its medicinal application. The review focuses on the medicinal uses, phytochemistry, and the biological activities of B. crassifolia to explore its benefits and potential uses.MethodsIn this review, we summarized data, published in Russia and in other countries related to B. crassifolia.ResultsRhizomes and leaves of this plant are in use as traditional remedies for the treatment of different disorders in the folk medicine systems of Russia and Asia. The plant is a potential source of tannins, benzanoids, flavonoids, polysaccharides and other active compounds. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb and individual compounds, which include adaptogenic, antiinflammatory, antihypertensive, antimicrobial, antioxidant, antiobesity, antitussive, cerebro-protective, hepatoprotective, immunomodulating, and diuretic.ConclusionThe review highlights the potential of B. crassifolia for further development of herbal medicines on its base.  相似文献   

15.
16.
Many plant species have evolved defense traits against herbivores. Associational effects (AEs) refer to a kind of apparent interaction where the herbivory risk to a focal plant species depends on the composition of other plant species in a neighborhood. Despite ample evidence for AEs between different plant species, this point of view has rarely been applied to polymorphism in defense traits within a plant species. The purpose of this review is to highlight an overlooked role of conspecific AEs in maintaining polymorphism in antiherbivore defense. First, I present a general review of AE between plant species and its role in the coexistence of plant species. This viewpoint of AE can be applied to genetic polymorphism within a plant species, as it causes frequency‐ and density‐dependent herbivory between multiple plant types. Second, I introduce a case study of conspecific AEs in the trichome‐producing (hairy) and glabrous plants of Arabidopsis halleri subsp. gemmifera. Laboratory and semi‐field experiments illustrated that AEs against the brassica leaf beetle Phaedon brassicae mediate a minority advantage in defense and fitness between hairy and glabrous plants. Combined with a statistical modeling approach, field observation revealed that conspecific AEs can maintain the trichome dimorphism via negative frequency‐dependent selection in a plant population. Finally, I discuss spatial and temporal scales at which AEs contribute to shaping genetic variation in antiherbivore defense in a plant metapopulation. Based on the review and evidence, I suggest that AEs play a key role in the maintenance of genetic variation within a plant species.  相似文献   

17.
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.Subject terms: Climate-change ecology, Microbial ecology, Community ecology, Microbial ecology, Microbiome  相似文献   

18.
Abstract

Structurally diverse natural products are valued for their targeted biological activity. The challenge of working with such metabolites is their low natural abundance and complex structure, often with multiple stereocenters, precludes large-scale or unsophisticated chemical synthesis. Since select plants contain the enzymatic machinery necessary to produce specialized compounds, tissue cultures can be used to achieve key transformations for large-scale chemical and/or pharmaceutical applications. In this context, plant tissue-culture bio-transformations have demonstrated great promise in the preparation of pharmaceutical products. This review describes the capacity of cultured plant cells to transform terpenoid natural products and the specific application of such transformations over the past three decades (1988–2019).  相似文献   

19.
In this review, I consider the contribution that common evening primrose (Oenothera biennis) has made towards integrating the ecology, evolution and genetics of species interactions. Oenothera biennis was among the earliest plant models in genetics and cytogenetics and it played an important role in the modern synthesis of evolutionary biology. More recently, population and ecological genetics approaches have provided insight into the patterns of genetic variation within and between populations, and how a combination of abiotic and biotic factors maintain and select on heritable variation within O. biennis populations. From an ecological perspective, field experiments show that genetic variation and evolution within populations can have cascading effects throughout communities. Plant genotype affects the preference and performance of individual arthropod populations, as well as the composition, biomass, total abundance and diversity of arthropod species on plants. A combination of experiments and simulation models show that natural selection on specific plant traits can drive rapid ecological changes in these same community variables. At the patch level, increasing genotypic diversity leads to a greater abundance and diversity of omnivorous and predaceous arthropods, which is also associated with increased biomass and fecundity of plants in genetically diverse patches. Finally, in questioning whether a community genetics perspective is needed in biology, I review several multifactorial experiments which show that plant genotype often explains as much variation in community variables as other ecological factors typically identified as most important in ecology. As a whole, research in the O. biennis system has contributed to a more complete understanding of the dynamic interplay between ecology, evolution and genetics.  相似文献   

20.
A general education biology course entitled ‘Biotechnology Transforms Our World’ has been developed to illustrate biological concepts with advances from biotechnology. The contributions of molecular biology to understanding human genetics, evolution, plant and animal (including human) biology and ecology are illustrated with specific case studies. Journal of Industrial Microbiology & Biotechnology (2000) 24, 308–309. Received 02 April 1999/ Accepted in revised form 11 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号