首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-facet diversity indices have been increasingly widely used in conservation ecology but congruence analyses both on horizontal and vertical axes have not yet been explored. We investigated the vertical and horizontal distributions of α and β taxonomic (TD), functional (FD) and phylogenetic diversity (PD) in a three-dimensional structured ecosystem. We focused on the Mediterranean coralligenous assemblages which form complex structures both vertically and horizontally, and are considered as the most diverse and threatened communities of the Mediterranean Sea. Although comparable to tropical reef assemblages in terms of richness, biomass and production, coralligenous assemblages are less known and more rarely studied, in particular because of their location in deep waters. Our study covers the entire range of distribution of coralligenous habitats along the French Mediterranean coasts, representing the most complete database so far developed for this important ecosystem. To our knowledge, this is the first analysis of spatial diversity patterns of marine biodiversity on both horizontal and vertical scales.Our study revealed that taxonomic diversity differed from functional and phylogenetic diversity patterns at the station level, the latter two being strongly structured by depth, with shallower stations generally richer than deeper ones. Considering all stations, phylogenetic diversity was less congruent to taxonomic diversity (Pearson's correlation of r = 0.48) but more congruent to functional diversity (r = 0.69) than randomly expected. Similar congruence patterns were revealed for stations deeper than 50 m (r = 0.44 and r = 0.84, respectively) but no significantly different congruence level than randomly expected was revealed among diversity facets for more shallow stations. Mean functional α- and β-diversity were lower than phylogenetic diversity and even lower than taxonomic α- and β-diversity for both vertical and horizontal scales. Low FD and PD values at both α- and β-diversity indicated functional and phylogenetic clustering. Community dissimilarities (β-diversity) increased over depth especially in central and eastern part of the French Mediterranean littoral and in northern Corsica, indicating coralligenous vertical structure within these regions. Overall horizontal β-diversity was higher within the 50–70 m depth belts.We conclude that taxonomic diversity alone is inadequate as a basis for setting conservation goals for this ecosystem and additional information, at least on phylogenetic diversity, is needed to preserve the ecosystem functioning and coralligenous evolutionary history. Our results highlight the necessity of considering different depth belts as a basis for regional scale conservation efforts. Current conservation approaches, such as the existing marine protected areas, are insufficient in preserving coralligenous habitats. The use of multi-facet indices should be considered, focusing on preserving local diversity patterns and compositional dissimilarities, both vertically and horizontally.  相似文献   

2.
Background: Habitat loss and fragmentation have been argued to drastically alter the composition of tree assemblages inhabiting small forest fragments but the successional trajectory experienced by such edge-affected habitats remains controversial.

Aims: Here we examine whether small fragments (3.4–91.2 ha) support seedling assemblages more similar to those in 10–70-year-old secondary forests than to those in mature forests, in order to infer to what extent fragments move toward early successional systems.

Methods: Using 59 0.1-ha plots distributed in a fragmented landscape of Brazilian Atlantic forest, we evaluated species richness and functional and taxonomic composition of seedling assemblages in 20 small forest fragments, 19 stands of secondary forest and 20 stands of mature forests in the interior of an exceptionally large fragment (ca. 3500 ha).

Results: Small fragments presented the least species-rich seedling assemblages (17.2 ± 5.7 species), followed by secondary (22.5 ± 5.3), and mature forest (28.4 ± 5.3). Small fragments had seedling assemblages with functional and taxonomic composition more similar to those in secondary than in mature forest. Small fragments had a greater relative richness and abundance of pioneer trees (ca. 40% more), vertebrate-dispersed (6–25%), and those bearing medium-sized seeds (30–70%), while large-seeded species and individuals were reduced (>50% decrement) in comparison to seedling assemblages in mature forest.

Conclusions: By comparing seedlings across a wide range of successional habitats we offer evidence that small forest fragments are experiencing an alternative successional pathway towards an early-successional system with reduced plant diversity.  相似文献   

3.
Mounting evidence points to a linkage between biodiversity and ecosystem functioning (B-EF). Global drivers, such as warming and nutrient enrichment, can alter species richness and composition of aquatic fungal assemblages associated with leaf-litter decomposition, a key ecosystem process in headwater streams. However, effects of biodiversity changes on ecosystem functions might be countered by the presumed high functional redundancy of fungal species. Here, we examined how environmental variables and leaf-litter traits (based on leaf chemistry) affect taxonomic and functional α- and β-diversity of fungal decomposers. We analysed taxonomic diversity (DNA-fingerprinting profiles) and functional diversity (community-level physiological profiles) of fungal communities in four leaf-litter species from four subregions differing in stream-water characteristics and riparian vegetation. We hypothesized that increasing stream-water temperature and nutrients would alter taxonomic diversity more than functional diversity due to the functional redundancy among aquatic fungi. Contrary to our expectations, fungal taxonomic diversity varied little with stream-water characteristics across subregions, and instead taxon replacement occurred. Overall taxonomic β-diversity was fourfold higher than functional diversity, suggesting a high degree of functional redundancy among aquatic fungi. Elevated temperature appeared to boost assemblage uniqueness by increasing β-diversity while the increase in nutrient concentrations appeared to homogenize fungal assemblages. Functional richness showed a negative relationship with temperature. Nonetheless, a positive relationship between leaf-litter decomposition and functional richness suggests higher carbon use efficiency of fungal communities in cold waters.  相似文献   

4.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   

5.
For many taxonomic groups, sparse information on the spatial distribution of biodiversity limits our capacity to answer a variety of theoretical and applied ecological questions. Modelling community-level attributes (α- and β-diversity) over space can help overcome this shortfall in our knowledge, yet individually, predictions of α- or β-diversity have their limitations. In this study, we present a novel approach to combining models of α- and β-diversity, with sparse survey data, to predict the community composition for all sites in a region. We applied our new approach to predict land snail community composition across New Zealand. As we demonstrate, these predictions of metacommunity composition have diverse potential applications, including predicting γ-diversity for any set of sites, identifying target areas for conservation reserves, locating priority areas for future ecological surveys, generating realistic compositional data for metacommunity models and simultaneously predicting the distribution of all species in a taxon consistent with known community diversity patterns.  相似文献   

6.
Background: Treeline ecotones represent environmental boundaries that fluctuate in space and time and thus induce changes in plant taxonomic and functional diversity.

Aims: To study changes through time in taxonomic and functional plant diversity patterns along the treeline ecotone.

Methods: In 2002, vegetation was sampled along a gradient from upper montane forest to the treeline–alpine transition in the South Ural Mountains, Russia. In 2014, vegetation was resampled and plant functional traits were collected. We studied spatial and temporal changes in plant species composition, functional composition and functional diversity.

Results: Species composition and diversity changed along the elevational gradient. The functional composition in height, leaf area, specific leaf area and leaf nitrogen content decreased with elevation, whereas functional composition of leaf carbon content increased. We found a temporal shift towards shorter plants with smaller leaves in treeline sites. Functional richness varied in several traits along the elevational gradient, while functional dispersion showed a trend towards increased functional dispersion in height, specific leaf area and leaf nitrogen in the treeline–tundra transition.

Conclusions: Tree encroachment across the treeline ecotone has resulted in a shift in plant species relative abundances and functional diversity, possibly affecting plant community assembly patterns.  相似文献   

7.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   

8.
The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules.  相似文献   

9.
Background: The extent to which nutrient availability influences plant community composition and dynamics has been a focus of ecological enquiry for decades.

Aims: Results from a long-term nitrogen (N) and phosphorus (P) addition experiment in alpine tundra were used to evaluate the importance of the two nutrients in structuring plant communities in three communities that differed in their snow cover amounts and duration and soil moisture characteristics.

Methods: A factorial N and P experiment was established in three meadows differing in initial vegetation composition and soil moisture. Plant and soil characteristics were measured after 20 years, and the dissimilarity among meadows and treatments were measured using permutational analysis of variance.

Results: Plant species richness declined uniformly across the three meadow types and in response to N and N + P additions, while both evenness and the Shannon diversity index finding indicated that nutrient additions had the highest impact on moister habitats. Overall, N impacts overshadowed changes attributed to P additions, and the N and N + P plots in wet meadow sites were the least diverse and scored the lowest dissimilarity averages among treatments. Dissimilarity estimates indicated that the control and P plots in the dry meadow community were more distinct in composition than all other plots, and especially those in the moist or wet meadows. Above-ground biomass of grasses and sedges (graminoids) increased with N additions while forbs appeared to show responses dictated in part by the graminoid responses. The most abundant grass species of moist and wet meadow, Deschampsia cespitosa, dominated N and N + P plots of the wet sites, but did not show a N response in moist areas in spite of its general abundance in moist meadow. Competition from other plant species in the moist areas likely diminished the D. cespitosa response and contributed to the resilience of the community to nutrient enrichment.

Conclusions: Initial community composition, as influenced by the specific moisture regime, appears to control the extent to which changes in nutrient resources can alter plant community structure. Long-term fertilization tends to support most but not all findings obtained from shorter-termed efforts, and wet meadows exhibit the largest changes in plant species numbers and composition when chronically enriched with N.  相似文献   

10.
Background: Gradients in the amounts and duration of snowpack and resulting soil moisture gradients have been associated with different plant communities across alpine landscapes.

Aims: The extent to which snow additions could alter plant community structure, both alone and in combination with nitrogen (N) and phosphorus (P) additions, provided an empirical assessment of the strength of these variables on structuring the plant communities of the alpine tundra at Niwot Ridge, Colorado Front Range.

Methods: A long-term snow fence was used to study vegetation changes in responses to snowpack, both alone and in conjunction with nutrient amendments, in plots established in dry and moist meadow communities in the alpine belt. Species richness, diversity, evenness and dissimilarity were evaluated after 20 years of treatments.

Results: Snow additions, alone, reduced species richness and altered species composition in dry meadow plots, but not in moist meadow; more plant species were found in the snow-impacted areas than in nearby controls. Changes in plant community structure to N and N + P additions were influenced by snow additions. Above-ground plant productivity in plots not naturally affected by snow accumulation was not increased, and the positive responses of plant species to nutrient additions were reduced by snow addition. Plant species showed individualistic responses to changes in snow and nutrients, and indirect evidence suggested that competitive interactions mediated responses. A Permanova analysis demonstrated that community dissimilarity was affected by snow, N, and P additions, but with these responses differing by community type for snow and N. Snow influenced community patterns generated by N, and finally, the communities impacted by N + P were significantly different than those affected by the individual nutrients.

Conclusions: These results show that changes in snow cover over a 20-year interval produce measureable changes in community composition that concurrently influence and are influenced by soil nutrient availability. Dry meadow communities exhibit more sensitivity to increases in snow cover whereas moist meadow communities appear more sensitive to N enrichment. This study shows that the dynamics of multiple limiting resources influence both the productivity and composition of alpine plant communities, with, species, life form, and functional traits mediating these responses.  相似文献   

11.
《Plant Ecology & Diversity》2013,6(2-3):127-137
Background: Functional trait-based approaches link species diversity patterns to ecosystem functioning. In the context of global change, understanding these links is vital for developing holistic biodiversity management strategies. Bryophytes, important ecosystem components owing to their biogeochemical functions, have not been the focus of many functional studies.

Aims: This is the first assessment of bryophyte functional diversity in the Azores archipelago, aiming to uncover multivariate trait richness and composition patterns along the elevational gradient on Terceira Island.

Methods: Based on five water acquisition and retention traits of leafy liverworts and mosses, we calculated functional diversity metrics within and among six bryophyte communities sampled along a 1021-m elevational transect.

Results: Trait composition differed significantly between coastal and mountain communities. Mosses presented inrolled leaves and ornamented leaf cells at low elevation but not at high elevation. These patterns were associated with an uphill shift from drier and warmer conditions to a moister and cooler environment.

Conclusions: Future climatic changes might affect bryophyte functional diversity patterns in Terceira Island, particularly for mosses. These results can be directly compared with those obtained for other archipelagos where the same protocol has been applied, allowing a joint assessment of insular vegetation functional diversity patterns.  相似文献   

12.
Abstract. We analysed the structure and diversity of the vegetation along an Arctic river to determine the relationship between species richness and plant community structure. We examined whether variation in species richness along the corridor is structured as (1) an increase in the number of communities due to increasing landscape heterogeneity, (2) an increase in the floristic distinctiveness (β-diversity) of communities, or (3) an increase in within-community richness (α-diversity) as species-poor communities are replaced by species-rich communities. We described 24 community types and analysed the relationship between site vascular species richness (γ-diversity) and β-diversity, α-diversity, site environmental heterogeneity, and the number of distinct plant communities. We also measured diversity patterns of vascular, bryophyte, and lichen species within communities and examined their relationship to community-level estimates of environmental factors. We found that an increase in site species richness correlated with an increase in the number of communities (r2= 0.323, P= 0.0173) and β-diversity (r2= 0.388, P= 0.0075), rather than an increase in the α-diversity of individual communities. Moisture and pH controlled most of the differences in composition between communities. Measures of species richness and correlations with moisture and pH within communities differed among vascular, bryophyte, and lichen species. Bryophyte richness was positively correlated with moisture (r2= 0.862, P= 0.0010) and lichen richness was negatively correlated with moisture (r2= 0.809, P= 0.0031). Vascular plants had a peak in richness at pH 6.5 (r2= 0.214, P < 0.0001). We conclude that site variation in vascular richness in this region is controlled by landscape heterogeneity, and structured as variation in the number and distinctiveness of recognizable plant communities.  相似文献   

13.
Question: What are the consequences of frequently occurring landslides on vegetation dynamics, floristic and structural diversity? Location: 39°27′N; 31°13′W – Morro Alto, Flores Island, Azores, Portugal. Methods: Six comparable landslides were selected. Plots were placed at the top, slope and toe of landslides. Data on floristic composition and biovolume, demography and size structure of the dominant tree species (Juniperus brevifolia) were collected. Hierarchical agglomerative clustering and Principal Component Analysis were used in order to identify succession stages and compare succession pathways and vegetation recovery in different parts of the landslides. Results: Four stages of primary succession on substrates formed by landslides were identified: pioneer (Festuca‐Sphagnum grassland), assembly (JuniperusFestuca‐Sphagnum open scrub), building (Juniperus‐Sphagnum scrub) and mature (Juniperus‐Sphagnum woodland). Concerning J. brevifolia populations, the succession pathways are independent of location on the landslide. However, at the floristic level, there are some differences, mainly in the pioneer stage at the toes of landslides. Better abiotic conditions, resulting in a higher succession rate, are probably responsible for a faster vegetation recovery on landslide toes. Conclusion: Landslides trigger succession processes that enable a massive regeneration of the dominant tree species and existence of species not present in mature forests. They are also responsible for the simultaneous occurrence of vegetation of different structures. Overall, landslides increase the floristic and structural diversity of the vegetation, consequently increasing landscape heterogeneity.  相似文献   

14.
The relationship between the diversity of higher plant macrofossils in surface sediments of lakes and the surrounding vegetation is examined in two mountain regions; Grødalen in central Norway and the south-east Cairngorms in Scotland. Two lake sediment cores from each area were also analysed to examine vegetation history and to estimate changes in biodiversity through the Holocene. The diversity of present day vegetation in each region was estimated using both quadrat data and classified satellite images of the study areas. The mean surface sample macrofossil representation of species recorded in quadrats collected within 250 m of the lakes was c. 17%. This figure drops to only c. 2% when the satellite imagery of the same area is used to provide a maximal species list. The macrofossil data from the Norwegian cores show that deglaciation in this region occurred earlier on the mountain summit than in the valley and that the maximum tree line elevation was during the interval 9100–4400 14C yr BP . In the Cairngorms the maximum tree line elevation was prior to c. 4500 14C yr BP . The changes in higher plant diversity recorded at these sites through the Holocene show that c. 4000 14C yr BP the reduction in the tree line resulted in decreased β-diversity at higher altitudes but an increase at the lower altitude as the forest cover opened up. Under conditions of climatic warming it is likely areas that come to lie below the tree line will experience reduced diversity and that a permanent loss of biodiversity would result from a severe reduction in the area above the tree line.  相似文献   

15.
Background: There is concern about increasing numbers of large herbivores including red deer (Cervus elaphus), but little is known about their impact on bryophytes.

Aims: This study set out to determine the effect of different localised densities of red deer on the internationally important Northern Atlantic hepatic mat, characteristic of oceanic heath vegetation, at four locations in the Scottish Highlands where sheep have been absent for decades.

Methods: Thirty 7 m × 7 m plots were randomly located in each study area. The standing crop dung pellet group count method was used to estimate red deer density. Species richness, diversity and cover of hepatic mat liverworts were obtained from 1 m × 1 m quadrats placed at random within the sample plots. Calluna vulgaris cover, ericoid height, rock cover, gradient and altitude were also recorded.

Results: Model simplification in analysis of covariance revealed a consistent pattern of decreasing cover of hepatic mat and Calluna with increasing red deer density at all four study areas. Northern Atlantic hepatic mat cover, diversity and species richness were positively correlated with Calluna cover.

Conclusions: The data suggest that Calluna cover is reduced (through trampling and browsing) at high local densities of red deer which has had cascading effects on the Northern Atlantic hepatic mat. Alternative explanations are discussed.  相似文献   

16.
Background: Due to the dry continental climate, the mountains of eastern Ladakh are unglaciated up to 6200–6400 m, with relatively large areas of developed soils between 5600 and 6000 m covered by sparse subnival vegetation. However, there are no studies on the composition of plant assemblages from such extreme elevations, their microclimates, vertical distributions and adaptive strategies.

Aims: The subnival vegetation was described and the relationship between microclimate, species distribution and species functional traits was analysed.

Methods: In total, 481 vegetation samples from 91 permanent plots, a floristic database of Ladakh and extensive microclimate measurements were used. Measurements of 15 functional traits were made and their relationship with species distribution between 4600 and 6150 m was tested.

Results: The subnival zone was characterised by extreme diurnal temperature fluctuations, a short growing season (between 88 and 153 days) and low soil temperature during the growing season (between 2.9 °C and 5.9 °C). It hosted 67 species, mainly hemicryptophytes, and ranged from ca. 5600 m to the highest known occurrence of vascular plants in the region (6150 m). The most common plant families were Brassicaceae, Asteraceae, Poaceae, Fabaceae and Cyperaceae. Subnival specialists with narrow elevational ranges represented 42% of the flora; these species were shorter, had relatively higher water content and water-use efficiency and contained more nutrients and soluble carbohydrates than species with a wider elevational range.

Conclusions: The subnival vegetation of eastern Ladakh is dominated by generalist species with wide vertical ranges and not by high-elevation specialists. These findings, in view of the vast unglaciated areas available for range extension, suggest a relatively high resilience of the subnival flora to climate change in this region.  相似文献   

17.
Background: Rare cactus in the Americas and other species worldwide are threatened species because of their high level of habitat specialisation, narrow distribution range and continuing population decline.

Aims: To identify management units (MUs) based on genetic variability and demographic structure in order to propose assertive conservation actions for Mammillaria crucigera and to provide a model case study for other species that are under similar threats.

Methods: We genotyped through eight microsatellite loci in 171 individuals and described demographic structures in six populations of this cactus based on plots of 1 m2.

Results: Across populations with a mean density of 2.6 m?2 and a total of ~500 individuals counted, 30% of the individuals were reproductive (diameter >2 cm). The total heterozygosity was low (HO = 0.54), but the inbreeding coefficient (FIS = 0.29) and the allele diversity (NA = 20) were high. Four genetic groups were distinguished, although considering the demographic structure, we propose three MUs.

Conclusions: It is critical to maintain the genetic connectivity within and among MUs, which can only be achieved through cooperation between government authorities and local habitants to halt the degradation and further destruction of the remnant populations. Searching MUs allows the identification of critical areas for conservation issues for all species whose extant populations are in a fragmented landscape.  相似文献   

18.
The diversity of spring habitats can be determined not only by local environmental conditions, but also by large-scale biogeographical effects. The effects can differ across various groups of organisms. We compared α-, β- and γ-diversity patterns of bryophytes and vascular plants of (sub)alpine springs in three contrasting mountain ranges: Alps (Switzerland), Balkans (Bulgaria), Western Carpathians (Slovakia, Poland). We used univariate and multivariate statistics to test for the effects of pH, conductivity, altitude, slope, mean annual temperature and annual precipitation on diversity patterns of both taxonomic groups and compared diversity patterns among the regions for particular pH and conductivity classes. We identified acidophyte and basiphyte, calcifuge and calcicole species using species response modelling. All regions displayed significant relationship between conductivity and α-diversity of vascular plants. Bulgaria showed the highest α-diversity of vascular plants for the middle part of the conductivity gradient. For both taxonomic groups, the β-diversity in the middle part of gradient was highest in Swiss Alps. The total species pool was lowest in Bulgaria. The percentage of basiphyte and calcicole species was highest in the Alps. In (sub)alpine springs, mineral richness was a better determinant of vascular plant α-diversity than pH, and the extent of the alpine area did not coincide with α-diversity. Observed inter-regional differences in diversity patterns could be explained by the different proportion of limestone bedrock and different biogeographic history. The differences in α-diversity between both taxonomic groups are presumably result of the different rates of adaptation processes.  相似文献   

19.
  1. Recent advances in molecular methods foster the documentation of small spatial scale biological diversity over large geographical areas. These advances allow to correctly record α-diversity, but also enable biomonitoring that describes intraspecific molecular diversity, providing valuable insights into the contemporary history of species. Such information is essential for the accurate monitoring of freshwater communities and provides a promising tool to identify conservation priorities at various spatial scales.
  2. Here, we combined morphological species determinations with genetic characterisation via DNA barcoding and species distribution modelling. We aimed to investigate whether closely related amphipod species occupying overlapping ecological niches and occurring in partial sympatry, demonstrate similar spatial patterns of intraspecific genetic diversity and share comparable population histories. Therefore, we characterised the amphipod fauna within the Kinzig catchment (1,058 km2, Hesse, Central Germany) that is a tributary of the Main River and part of the long-term ecological research network using genetics.
  3. Our genetic analysis revealed two more taxonomic entities than previously known. The most common species was Gammarus fossarum clade 11 (or type B), followed by Gammarus roeselii clade C, Gammarus pulex clade D, G. pulex clade B and a very rare previously unknown lineage within the G. fossarum-species complex, which we refer to as G. fossarum clade RMO. These five taxa differed in their intraspecific genetic diversity, with G. fossarum clade 11 demonstrating the highest diversity and having a prominent small-scale pattern with endemic haplotypes in headwater regions. Distributions were predicted for the three most abundant molecularly identified species.
  4. The upstream reaches maintained high intraspecific α- and β-diversity, pointing towards a more complex population structure of G. fossarum clade 11. This highlights the importance of considering intraspecific diversity for the conservation of individual species. DNA-based species distribution models shed light on species-specific habitat preferences, and showed spatial distribution patterns that supported ecological inference and conservation management. Barcoding specimens prior to modelling can increase robustness and performance of distribution models as juveniles can be incorporated, and cryptic species complexes disentangled.
  5. Our integrative study contributes to the further development of science-informed and holistically considered effective conservation measures. Some poorly dispersing hololimnic species may serve as representatives for our understanding of the natural history of the local communities in headwater regions—and their protection. Intraspecific genetic diversity should be considered in conservation management decisions as it can provide valuable information on past and present population demography, connectivity, and recovery processes of species—information that rarely can be achieved by traditional monitoring approaches.
  相似文献   

20.
Background: Long-term climate trends in mountain systems often vary strongly with elevation.

Aims: To evaluate elevation dependence in long-term precipitation trends in subalpine forest and alpine tundra zones of a mid-continental, mid-latitude North American mountain system and to relate such dependence to atmospheric circulation patterns.

Methods: We contrasted 59-year (1952–2010) precipitation records of two high-elevation climate stations on Niwot Ridge, Colorado Front Range, Rocky Mountains, USA. The sites, one in forest (3022 m a.s.l.) and the other in alpine tundra (3739 m), are closely located (within 7 km horizontally, ca. 700 m vertically), but differ with respect to proximity to the mountain-system crest (the Continental Divide).

Results: The sites exhibited significant differences in annual and seasonal precipitation trends, which depended strongly on their elevation and distance from the Continental Divide. Annual precipitation increased by 60 mm (+6%) per decade at the alpine site, with no significant change at the subalpine site. Seasonally, trends at the alpine site were dominated by increases in winter, which we suggest resulted from an increase in orographically generated precipitation over the Divide, driven by upper-air (700 hPa) north-westerly flow. Such a change was not evident at the subalpine site, which is less affected by orographic precipitation on north-westerly flow.

Conclusions: Elevation dependence in precipitation trends appears to have arisen from a change in upper-air flow from predominantly south-westerly to north-westerly. Dependence of precipitation trends on topographic position and season has complex implications for the ecology and hydrology of Niwot Ridge and adjacent watersheds, involving interactions among physical processes (e.g. snowpack dynamics) and biotic responses (e.g. in phenologies and ecosystem productivity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号