首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tjepkema  J.D.  Schwintzer  C.R.  Burris  R.H.  Johnson  G.V.  Silvester  W.B. 《Plant and Soil》2000,219(1-2):285-289
Substantial enrichment of some plant parts in 15N relative to the rest of the plant is unusual, but is found in the nitrogen-fixing nodules of many legumes. A range of actinorhizal plants was surveyed to determine whether the nodules of any of them are also substantially enriched in 15N. The nonlegume Parasponia, nodulated by a rhizobium, was also included. Four of the actinorhizal genera and Parasponia were grown in N-free culture, and three actinorhizal genera were collected from the field. Nodules of Parasponia, Casuarina and Alnus were15N enriched relative to other plant parts, but only Parasponia approached the degree of enrichment found in some legume nodules. The nodules of Datisca, Myrica, Elaeagnus, Shepherdia, and Coriaria were depleted in 15N. Thus many actinorhizal nodules are depleted in 15N compared to other plant parts and enrichment is modest when it does occur. Whole plant 15N content (15N) in four actinorhizal plants and Parasponia showed a relatively narrow range of –1.41 to –1.90. Hence regardless of the degree of nodule enrichment or depletion, whole plant 15N content appears to vary little in plants grown in N-free culture.  相似文献   

2.
Summary The relative nitrogen fixation efficiencies (RE 1-[H2 evolved÷C2H2 reduced]·100) of four mesquite (Prosopis glandulosa var.torreyana) rhizobia (Strains WR 1001, WR 1002, L5, L9) and a cowpea rhizobia (Strain 176A32) on mesquite were evaluated in a glasshouse experiment. Plant yield, shoot N accumulation, and the natural15N abundance (15N) of nodule tissue were determined. Strain WR 1002 failed to nodulate mesquite and strain L5 produced ineffective nodules. Among the three effective strains (WR 1001, L9, 176A32) the cowpea strain (176A32) and strain L9 had significantly higher RE than strain WR 1001. Differences in RE, however, were not accompanied by significantly higher plant yield and shoot N accumulation. The difference in15N abundance between foliar tissue and nodules (nodules minus leaves) was 0.47 15N for the ineffective L5 nodules, while for the effective WR 1001, L9, and 176A32 nodules, respectively, this difference was 8.35, 7.81, and 8.35 15N. This indicates a similar relationship between N2-fixing effectiveness and natural15N enrichment of nodules that was previously observed in soybeans (Glycine max, L. Merr.). Strains WR 1001 and L9 produced elongate, indeterminate nodules typical for mesquite. The ineffective L5 nodules had few infected cells and an abundance of cortical amyloplasts. Mesquite nodules produced by the cowpea strain were spherical and were somewhat more similar in internal morphology to determinate nodules typical of cowpea than indeterminate nodules normally associated with mesquite.  相似文献   

3.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

4.
Summary The15N natural abundance values of various Amazon floodplain (várzea) plants was investigated. Samples of young leaf tissues were collected during three different periods of the river hydrography (low water, mid rising water and high water) and during one period in the Madeira River (high water). A large variation of15N abundance was observed, both among the different plant types and between the different flood stages. This variation probably, reflected, in part, the highly variable nature of the floodplain, sometimes dry and oxygenated and at other times inundated and anaerobic and, in part, changes in plant nitrogen metabolism. Comparison of the nitrogen isotopic composition of leguminous plants with that of non-leguminous plants showed that, on average, the15N abundance was lower in the legumes than non-legumes, suggesting active N-fixation. Also, the15N natural abundance in aquatic grasses of the generaPaspalum, was in general, lower than the15N abundance of aquatic grasses of the generaEchinochloa. As both of these grasses grow in the same general habitat, it appears thatPaspalum grasses may also be nitrogen fixers.  相似文献   

5.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.  相似文献   

6.
Wood  M.  McNeill  A. M. 《Plant and Soil》1993,155(1):329-332
A gas-tight chamber has been constructed to calibrate the 15N isotope dilution method against direct 15N2 measurements. The theoretical basis for such estimates is given, and the practical problems associated with the experiments are discussed.  相似文献   

7.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

8.
15N natural abundances and N use by tundra plants   总被引:2,自引:0,他引:2  
Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar 15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups were consistent across moist tussock tundra at several other sites and across five other tundra types at a single site. Ericaceous species had the lowest 15N values, ranging between about –8 to –6. Foliar 15N contents increased progressively in birch, willows and sedges to maximum 15N values of about +2 in sedges. Soil 15N contents in tundra ecosystems at our two most intensively studied sites increased with depth and 15N values were usually higher for soils than for plants. Isotopic fractionations during soil N transformations and possibly during plant N uptake could lead to observed differences in 15N contents among plant species and between plants and soils. Patterns of variation in 15N content among species indicate that tundra plants acquire nitrogen in extremely nutrient-poor environments by competitive partitioning of the overall N pool. Differences in plant N sources, rooting depth, mycorrhizal associations, forms of N taken up, and other factors controlling plant N uptake are possible causes of variations in 15N values of tundra plant species.  相似文献   

9.
δ15N and total nitrogen content of above- and belowground tissues of 13 plant species from two successional stages (open pioneer community and ruderal grass stage) of a dry acidic grassland in Southern Germany were analysed, in order to evaluate whether resource use partitioning by niche separation and N input by N2-fixing legumes are potential determinants for species coexistence and successional changes. Within each stage, plants from plots with different legume cover were compared. Soil inorganic N content, total plant biomass and δ15N values of bulk plant material were significantly lower in the pioneer stage than in the ruderal grass community. The observed δ15N differences were rather species- than site-specific. Within both stages, there were also species-specific differences in isotopic composition between above- and belowground plant dry matter. Species-specific δ15N signatures may theoretically be explained by (i) isotopic fractionation during microbial-mediated soil N transformations; (ii) isotopic fractionation during plant N uptake or fractionation during plant–mycorrhiza transfer processes; (iii) differences in metabolic pathways and isotopic fractionation within the plant; or (iv) partitioning of available N resources (or pools) among plant groups or differential use of the same resources by different species, which seems to be the most probable route in the present case. A significant influence of N2-fixing legumes on the N balance of the surrounding plant community was not detectable. This was confirmed by the results of an independent in situ removal experiment, showing that after 3 years there were no measurable differences in the frequency distribution between plots with and without N2-fixing legumes.  相似文献   

10.
P. J. Goodman 《Plant and Soil》1988,112(2):247-254
The stable isotope15N is particularly valuable in the field for measuring N fixation by isotope dilution. At the same time other soil-plant processes can be studied, including15N recovery, and nitrogen transfer between clover and grass. Three contrasting sites and soils were used in the present work: a lowland soil, an upland soil, and an upland peat. Nitrogen fixation varied from 12 gm–2 on lowland soil to 2.7 gm–2 on upland peat. Most N transfer occurred on upland soil (4.2 gm–2) which, added to nitrogen fixed, made a total of 8.7 gm2 input during summer 1985.15N recovery for the whole experiment was small, around 25%.Measurement of dead and dying leaves, stubble and roots, suggests that plant organ death is the first stage in N transfer from white clover to ryegrass, through the decomposer cycle. Decomposition was fastest on lowland soils, slowest on peat. On lowland soil this decomposer nitrogen is apparently subverted before transfer, probably by soil microbes.Variations in natural abundance of15N in plants were found in the two species on the different soils. These might be used to measure nitrogen fixation without adding isotope, but the need for many replicates and repeat samples would limit throughput.  相似文献   

11.
* Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.  相似文献   

12.
13.
14.
This study presents the latitudinal variation (from 60° 30′ N to 68° 2′ N latitude) of natural abundances of 15N in the foliage, humus and soils of boreal forests of Finland. Our results clearly showed that N concentration of the foliage did not change significantly with latitudes but their 15N values were significantly higher in higher latitude sites relative to that of the mid and lower latitude sites, indicating the different forms of N uptake at the higher latitudes compared to the lower latitudes. We assume that the higher foliage δ15N values of the higher latitudes trees might be due to either more openness of N cycle (greater proportional N losses) in these latitudes compared to the sites of southern latitudes (lower N losses) or the differences in their mycorrhizal associations. Regression analysis showed that the temperature was the main factor influencing the 15N natural abundance of humus and soil of all forest ecosystems, both before and after clear-cut, whereas rainfall was the main controlling factor to the foliage 15N. Possible reasons behind the increasing δ15N natural abundances of plants and soils with increasing latitudes are discussed in this paper. The clear-cut did not show any specific trend on the 15N fractionation in humus and soil, i.e. both 15N-enrichment and -depletion occurred after clear-cut.  相似文献   

15.
Hardarson  Gudni  Atkins  Craig 《Plant and Soil》2003,252(1):41-54
Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N2, so reducing the use of expensive fertiliser-N and enhancing soil fertility. N2 fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. By exploiting the stable nitrogen isotope 15N, it has been possible to reliably measure rates of N2 fixation in a wide range of agro-ecological field situations involving many leguminous species. The accumulated data demonstrate that there is a wealth of genetic diversity among legumes and their Rhizobium symbionts which can be used to enhance N2 fixation. Practical agronomic and microbiological means to maximise N inputs by legumes have also been identified.  相似文献   

16.
An increasing amount of evidence indicates that N can be transferred between plants. Nonetheless, a number of fundamental questions remain. A series of experiments was initiated in the field to examine N transfer between N2-fixing soybean (Glycine max [L.] Merr.) varieties and a non-nodulating soybean, and between N2-fixing peanut (Arachis hypogaea L.) or soybean and neighboring weed species. The experiments were conducted in soils with low N fertilities and used differences in N accumulation and/or 15N natural abundance to estimate N transfer. Mixtures of N2-fixing and non-nod soybean indicated that substantial inter-plant N transfer occurred. Amounts were variable, ranging from negligible levels to 48% of the N found in the non-nod at maturity. Transfer did not appear to strongly penalize the N2-fixing donor plants. But, in cases where high amounts of N were transferred, N content of donors was noticeably lowered. Differences were evident in the amount of N transferred from different N2-fixing donor genotypes. Results of experiments with N2-fixing crops and the weed species prickly sida (Sida spinosa L.) and sicklepod (Senna obtusifolia [L.] Irwin & Barneby) also indicated substantial N transfer occurred over a 60-day period, with amounts accounting for 30–80% of the N present in the weeds. Transfer of N, however, was generally very low in weed species that are known to be non-hosts for arbuscular mycorrhizae (yellow nutsedge, Cyperus esculentus L. and Palmer amaranth, Amaranthus palmeri [S.] Watson). The results are consistent with the view that N transfer occurs primarily through mycorrhizal hyphal networks, and they reveal that N transfer may be a contributing factor to weed problems in N2-fixing crops in low N fertility conditions.  相似文献   

17.
A plant mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.), and ryegrass (Lolium perenne L.) was established in the spring of 1991 under a cover-crop of barley. Treatments were two levels of nitrogen (400 and 20 kg N ha-1) and two cutting intensities (3 and 6 cuts per season). Fixation of atmospheric derived nitrogen was estimated by two 15N dilution methods, one based on application of 15N to the soil, the other utilising small differences in natural abundance of 15N.Both methods showed that application of 400 kg N ha-1 significantly reduced dinitrogen fixation, while cutting frequency had no effect. Atmospheric derived nitrogen constituted between 50 and 64% of harvested clover nitrogen in the high-N treatment, while between 73% and 96% of the harvested clover nitrogen was derived from the atmosphere in the low-N treatment. The amounts of fixed dinitrogen varied between 31–72 kg N ha-1 and 118–161 kg N ha-1 in the high-N and low-N treatment, respectively. The highest values for biological dinitrogen fixation were estimated by the enriched 15N dilution method.Estimates of transfer of atmospheric derived nitrogen from clover to grass obtained by the natural 15N abundance method were consistently higher than those obtained by the enriched 15N dilution method. Neither mineral nitrogen application nor defoliation frequency affected transfer of atmospheric derived nitrogen from clover to grass.Isotopic fractionation of 14N and 15N (B value) was estimated by comparing results for nitrogen fixation obtained by the enriched 15N dilution and the natural 15N abundance method, respectively. B was on average +1.20, which was in agreement with a B value determined by growing white clover in a nitrogen free media.  相似文献   

18.
The 15N methods are potentially accurate for measuring N2 fixation in plants. The only problem with those methods is, how to ensure that the 15N/14N ratio in the plant accurately reflects the integrated 15N/14N ratio (R) in soil which is variable in time and with soil depth. However, the consequences of using an inappropriate reference plant vary with the level of N2 fixation and the conditions under which the study was made. For example, the errors introduced into the values of N2 fixation are higher at low levels of fixation, and decrease with increasing rates of fixation. At very high N2 fixation rates, the errors are often insignificant. Also, the magnitude of error is proportional to the rate of decline of the 15N/14N ratio with time. Since N2 fixation in most plants would be expected to below 60%, the question of how to select a good reference plant is still pertinent. In this paper, we have discussed some of the criteria to adopt in selecting reference plants, e.g. how to ensure that the reference plant is not fixing N2, is absorbing most of its N from the same zone as the fixing plant, and in the same pattern with time, etc. In addition, we have discussed 15N labelling materials and methods that are likely to minimize any errors even when the fixing and reference plants don't match well in certain important criteria. The use of slow release 15N fertilizer or 15N labelled plant materials results in slow changes in the 15N/14N ratio of soil, and is strongly recommended. Where 15N inorganic fertilizers are used, the application of the fertilizer in small splits at various intervals is recommended over a one-time application. The problem with the reference crop, which has sometimes discouraged potential users of the 15N methods, is surmountable, as discussed in this paper.  相似文献   

19.
Methods for measuring biological nitrogen fixation in grain legumes   总被引:1,自引:0,他引:1  
To assure proper management and fully realize the benefits of the legume-Rhizobium symbiosis it is necessary to be able to quantify the amount of nitrogen fixed. Having measured the effectiveness of atmospheric N2 fixation the macro- or micro-symbionts as well as agronomic factors can be manipulated with the objective to maximize biological nitrogen fixation. A suitable method to quantify nitrogen fixation is therefore necessary in any programme aiming at increasing N2 fixation, like the one being reported in this volume. There are several methods available to quantify nitrogen fixation and most of the commonly used ones are described in the present paper listing their advantages and disadvantages.  相似文献   

20.
The15N abundance of plants usually closely reflects the15N abundance of their major immediate N source(s); plant-available soil N in the case of non-N2-fixing plants and atmospheric N2 in the case of N2 fixing plants. The15N abundance values of these sources are usually sufficiently different from each other that a significant and systematic difference in the15N abundance between the two kinds of plants can be detected. This difference provides the basis for the natural15N abundance method of estimating the relative contribution of atmospheric N2 to N2-fixing plants growing in natural and agricultural settings. The natural15N abundance method has certain advantages over more conventional methods, particularly in natural ecosystems, since disturbance of the system is not required and the measurements may be made on samples dried in the field. This method has been tested mainly with legumes in agricultural settings. The tests have demonstrated the validity of this method of arriving at semi-quantitative estimates of biological N2-fixation in these settings. More limited tests and applications have been made for legumes in natural ecosystems. An understanding of the limits and utility of this method in these systems is beginning to emerge. Examples of systematic measurements of differences in15N abundance between non-legume N2-fixing systems and neighbouring non-fixing systems are more unusual. In principle, application of the method to estimate N2-fixation by nodulated non-legumes, using the natural15N abundance method, is as feasible as estimating N2-fixation by legumes. Most of the studies involving N2-fixing non-legumes are with this type of system (e.g., Ceanothus, Chamabatia, Eleagnus, Alnus, Myrica, and so forth). Resuls of these studies are described. Applicability for associative N2-fixation is an empirical question, the answer to which probably depends upon the degree to which fixed N goes predominantly to the plant rather than to the soil N pool. The natural15N abundance method is probably not well suited to assessing the contribution of N2-fixation by free-living microorganisms in their natural habitat, particularly soil microorganisms.This work was supported in part by subcontracts under grants from the US National Science Foundation (DEB79-21971 and BSR821618)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号