首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~ 1.89 × 106 member d ‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d ‐octapeptide d ‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.  相似文献   

2.
Humans are exposed much more often to exogenous Saccharomyces cerevisiae (a baker’s yeast) than exogenous Candida albicans (a highly infectious yeast) but suffer no apparent complications from S. cerevisiae. We hypothesize that variations in characteristics between these two species may be due, in part, to differences in glycine metabolism. In this study, we examined differences in glycine oxidation between C. albicans and S. cerevisiae. Both C. albicans and S. cerevisiae were cultured in glycine enriched media, followed by determination of glycine oxidation and amino acid concentrations in cells. Glycine was degraded to a much greater extent in C. albicans than in S. cerevisiae. Threonine concentrations and glycine oxidation were also elevated in C. albicans. Almost all of the disappearance of glycine from incubation media was accounted for by the formation of serine, threonine, and CO2 in S. cerevisiae, whereas these products represented only 50% of the metabolized glycine in C. albicans. The unidentified metabolites of glycine in C. albicans, presumably purines, could contribute to its infectious capacity and this warrants further study.  相似文献   

3.
The Candida albicans CaENG1 gene encoding an endo-1,3-β-glucanase was cloned by screening a genomic library with a DNA probe obtained by polymerase chain reaction using synthetic oligonucleotides designed according to conserved regions found between two Saccharomyces cerevisiae endo-1,3-β-glucanases (Eng1p and Eng2p). The gene contains a 3435-bp open reading frame (ORF), capable of encoding a protein of 1145 amino acids (124,157 Da), that contains no introns. Comparison of the ScEng1p sequence with partial C. albicans genomic sequences revealed the presence of a second protein with sequence similarity (the product of the Ca20C1.22c ORF, which was named CaENG2). Disruption of the CaENG1 gene in C. albicans had no dramatic effects on the growth rate of the strains, but it resulted in the formation of chains of cells, suggesting that the protein is involved in cell separation. Expression of CaENG1 in S. cerevisiae cells afforded a 12-fold increase in the 1,3-β-glucanase activity detected in culture supernatants, showing that the protein has similar enzymatic activity to that of the S. cerevisiae Eng1p. In addition, when the C. albicans protein was expressed under its native promoter in S. cerevisiae eng1 mutant cells, it was able to complement the separation defect of this mutant, indicating that these two proteins are true functional homologues.  相似文献   

4.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   

5.
Morphogenesis in the yeast Saccharomyes cerevisiae consists primarily of bud formation. Certain cell division cycle (CDC) genes, CDC3, CDC10, CDC11, CDC12, are known to be involved in events critical to the pattern of bud growth and the completion of cytokinesis. Their products are associated with the formation of a ring of neck filaments that forms at the region of the mother cell-bud junction during mitosis. Morphogenesis in Candida albicans, a major fungal pathogen of humans, consists of both budding and the formation of hyphae. The latter is thought to be related to the pathogenesis and invasiveness of C. albicans. We have isolated and characterized C. albicans homologs of the S. cerevisiae CDC3 and CDC10 genes. Both C. albicans genes are capable of complementing defects in the respective S. cerevisiae genes. RNA analysis of one of the genes suggests that it is a regulated gene, with higher overall expression levels during the hyphal phase than in the yeast phase. Not surprisingly, DNA sequence analysis reveals that the proteins share extensive homology at the amino acid level with their respective S. cerevisiae counterparts. Related genes are also found in other species of Candida and, more importantly, in filamentous fungi such as Aspergillus nidulans and Neurospora crassa. A database search revealed significant sequence similarity with two peptides, one from Drosophila and one from mouse, suggesting strong evolutionary conservation of function.  相似文献   

6.
7.
Saccharomyces cerevisiae expresses two proteins that together support high‐affinity Fe‐uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe2+ and a ferric iron permease, Ftr1p, which supports Fe‐accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe‐uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high‐affinity Fe‐uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe‐uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe‐uptake proteins, we demonstrate that they support a mechanism of Fe‐trafficking that involves channelling of the CaFet34‐generated Fe3+ directly to CaFtr1 for transport into the cytoplasm.  相似文献   

8.
Transfer of budding Candida albicans yeast cells from the rich, complex medium YEPD to the defined tissue culture medium RPMl 1640 (RPMI) at 37°C and 5% CO2 causes rapid onset of hyphal induction. Among the genes induced under these conditions are hyphal-specific genes as well as genes expressed in response to changes in temperature, CO2 and specific media components. A cDNA library constructed from cells incubated for 20 min in RPMI was differentially screened with yeast (YEPD)- and hyphal (RPMI)-specific probes resuming in identification of a gene expressed in response to culture conditions but not regulated by the yeast-hyphal transition. The deduced gene product displays significant identity to Saccharomyces cerevisiaeα-agglutinin, encoded by AGα1, an adhesion glycoprotein that mediates mating of haploid cells. The presence of this gene in C albicans is curious since the organism has not been observed to undergo meiosis. We designate the C. albicans gene ALS1 (for a gglutinin-l ike s equence). While the N- and C-termini of the predicted 1260-amino-acid ALS1 protein resemble those of the 650-amino-acid AGα1, ALS1 contains a central domain of tandem repeats consisting of a highly conserved 36-amino-acid sequence not present in AGb1. These repeats are also present on the nucleotide level as a highly conserved 108bp motif. Southern and Northern blot analyses indicate a family of C. albicans genes that contain the tandem repeat motif; at least one gene in addition to ALS1 is expressed under conditions similar to those for ALS1 expression. Genomic Southern blots from several C. albicans isolates indicate that the number of copies of the tandem repeat element in ALS1 differs across strains and. In some cases, between ALS1 alleles in the same strain, suggesting a strain-dependent variability in ALS1 protein size. Potential roles for the ALS1 protein are discussed.  相似文献   

9.
Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker’s yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80 % similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS–SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.  相似文献   

10.
Plasmids containing derivatives of the Saccharomyces cerevisiae leucyl-tRNA (tRNA3 3 Leu ) gene that vary in anticodon sequence were constructed and transformed into the pathogen Candida albicans and S. cerevisiae. C. albicans could readily be transformed with plasmids encoding leucyl-tRNA genes with the anticodons CAA and UAA (recognizing the codons UUG and UUA) and expression of the heterologous tRNALeu could be demonstrated by Northern RNA blotting. In contrast, no transformants were obtained if the anticodons were UAG (codons recognized CUN, UUR) and CAG (codon CUG), indicating that the insertion of leucine at CUG codons is toxic for C. albicans. All tRNALeu-encoding plasmids transformed S. cerevisiae with equally high efficiencies. These results provide in vivo evidence that non-standard decoding of CUG codons is essential for the viability of C. albicans.  相似文献   

11.
Summary An 8.6-kb fragment was isolated from an EcoRI digest of Candida albicans ATCC 10261 genomic DNA which conferred the property of autonomous replication in Saccharomyces cervisiae on the otherwise non-replicative plasmid pMK155 (5.6 kb). The DNA responsible for the replicative function was subcloned as a 1.2-kb fragment onto a non-replicative plasmid (pRC3915) containing the C. albicans URA3 and LEU2 genes to form plasmid pRC3920. This plasmid was capable of autonomous replication in both S. cerevisiae and C. albicans and transformed S. cerevisiae AH22 (leu2 ) to Leu+ at a frequency of 2.15 × 103 transformants per pg DNA, and transformed C. albicans SGY-243 (ura3) to Ura+ at a frequency of 1.91 × 103 transformants per g DNA. Sequence analysis of the cloned DNA revealed the presence of two identical regions of eleven base pairs (5TTTTATGTTTT3) which agreed with the consensus of autonomously replicating sequence (ARS) cores functional in S. cerevisiae. In addition there were two 10/11 and numerous 9/11 matches to the core consensus. The two 11/11 matches to the consensus, CaARS1 and CaARS2, were located on opposite strands in a non-coding AT-rich region and were separated by 107 bp. Also present on the C. albicans DNA, 538 by from the ARS cores, was a gene for 5S rRNA which showed sequence homology with several other yeast 5S rRNA genes. A sub-fragment (494 bp) containing the 5S rRNA gene (but not the region containing the ARS cores) hybridized to genomic DNAs from a number of yeast species, including S. cerevisiae, C. tropicalis, C. pseudotropicalis, C. parapsilosis, C. kruseii, C. (Torulopsis) glabrata and Neurospora crassa. The 709-bp ARS element (but not the 5S rRNA gene) was necessary for high-frequency transformation and autonomous plasmid replication in both S. cerevisiae and C. albicans.EMBL/GenBank database accession number: X16634 (5S rRNA)  相似文献   

12.
13.
The nature of the cross reaction of the mycelial mannan of Trichophyton rubrum and galactomannan isolated from the culture medium of Aspergillus fumigatus with antisera of Saccharomyces cerevisiae and Candida albicans is described. Cross-reactivity of polysaccharides of both T. rubrum and A. fumigatus was weak with antisera of C. albicans and S. cerevisiae, but the galactomannan of A. fumigatus showed slightly stronger activity than the mannan of T. rubrum which possesses more closely related chemical structure of the mannans of S. cerevisiae and C. albicans.  相似文献   

14.
15.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

16.
The effect of sodium azide in heat shock-induced cell death was studied in Debaryomyces vanrijiae, Candida albicans, and Saccharomyces cerevisiae yeasts. The results presented demonstrate that the azide addition induced a drastic decrease in the thermotolerance of glucose-grown D. vanrijiae. In contrast, glucose-grown S. cerevisiae and C. albicans cells treated with NaN3 became more resistant to heat shock than control cells. Nevertheless, in galactose medium the decrease of thermotolerance of S. cerevisiae and C. albicans cells was observed in the presence of sodium azide. It was suggested that the decreasing effect of sodium azide on thermotolerance takes place only when the yeast cell is incapable of using fermentation for ATP synthesis and obtains energy via oxidative phosphorylation. Received: 27 December 2001 / Accepted: 27 February 2002  相似文献   

17.
Comparative genomics of yeast species: new insights into their biology   总被引:2,自引:0,他引:2  
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.  相似文献   

18.
The succeptibility of Saccharomyces cerevisiae to the anti-microbial peptide, histatin 5, was tested after pre-growth in fermentable and non-fermentable carbon sources and in the absence or presence of the uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP). S. cerevisiae was more resistant to histatin 5 when grown on a fermentable carbon source compared to growth on a non-fermentable carbon source, indicating an important role for oxidative phosphorylation in histatin 5-induced cell death. Oxidative phosphorylation is a pre-requisite for histatin 5-induced cell death in Candida albicans but this is not the case in S. cerevisiae. Incubation of CCCP-treated S. cerevisiae cells with histatin 5 still resulted in cell death. These results suggest that histatin 5-induced cell death in S. cerevisiae differs from that in C. albicans.Revisions received 28 September 2004  相似文献   

19.
20.
Candida albicans, an ascomycete, has an ability to switch to diverse morphological forms. While C. albicans is predominatly diploid, it can tolerate aneuploidy as a survival strategy under stress. Aurora kinase B homolog Ipl1 is a critical ploidy regulator that controls microtubule dynamics and chromosome segregation in Saccharomyces cerevisiae. In this study, we show that Ipl1 in C. albicans has a longer activation loop than that of the well‐studied ascomycete S. cerevisiae. Ipl1 localizes to the kinetochores during the G1/S phase and associates with the spindle during mitosis. Ipl1 regulates cell morphogenesis and is required for cell viability. Ipl1 monitors microtubule dynamics which is mediated by separation of spindle pole bodies. While Ipl1 is dispensable for maintaining structural integrity and clustering of kinetochores in C. albicans, it is required for the maintenance of bilobed distribution of clustered kinetochores along the mitotic spindle. Depletion of Ipl1 results in erroneous kinetochore‐microtubule attachments leading to aneuploidy due to which the organism can survive better in the presence of fluconazole. Taking together, we suggest that Ipl1 spatiotemporally ensures bilobed kinetochore distribution to facilitate bipolar spindle assembly crucial for ploidy maintenance in C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号