首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1989,109(6):3315-3324
The human asialoglycoprotein receptor is a heterooligomer of the two homologous subunits H1 and H2. As occurs for other oligomeric receptors, not all of the newly made subunits are assembled in the RER into oligomers and some of each chain is degraded. We studied the degradation of the unassembled H2 subunit in fibroblasts that only express H2 (45,000 mol wt) and degrade all of it. After a 30 min lag, H2 is degraded with a half-life of 30 min. We identified a 35-kD intermediate in H2 degradation; it is the COOH-terminal, exoplasmic domain of H2. After a 90-min chase, all remaining intact H2 and the 35- kD fragment were endoglycosidase H sensitive, suggesting that the cleavage generating the 35-kD intermediate occurs without translocation to the medial Golgi compartment. Treatment of cells with leupeptin, chloroquine, or NH4Cl did not affect H2 degradation. Monensin slowed but did not block degradation. Incubation at 18-20 degrees C slowed the degradation dramatically and caused an increase in intracellular H2, suggesting that a membrane trafficking event occurs before H2 is degraded. Immunofluorescence microscopy of cells with or without an 18 degrees C preincubation showed a colocalization of H2 with the ER and not with the Golgi complex. We conclude that H2 is not degraded in lysosomes and never reaches the medial Golgi compartment in an intact form, but rather degradation is initiated in a pre-Golgi compartment, possibly part of the ER. The 35-kD fragment of H2 may define an initial proteolytic cleavage in the ER.  相似文献   

2.
The human asialoglycoprotein receptor subunit H2a is cotranslationally inserted into the ER membrane. When expressed together with subunit H1 in mouse fibroblasts part forms a hetero-oligomer that is transported to the cell surface, but when expressed alone it is all rapidly degraded. Degradation is insensitive to lysosomotropic agents and the undegraded precursor is last detected in the ER region of the cell. Small amounts of an intermediate 35-kD degradation product can be detected (Amara, J. F., G. Lederkremer, and H. F. Lodish. 1989. J. Cell Biol. 109:3315). We show here that the oligosaccharides on both precursor H2a and the 35-kD fragment are Man6-9GlcNAc2, structures typically found in pre-Golgi compartments. Subcellular fractionation shows that the intermediate degradation product does not cofractionate with the lysosomal enzyme beta-galactosidase, but is found in a part of the ER that contains ribosomes. Thus the intermediate degradation product is localized in the ER, indicating that the initial degradation event does take place in the ER. All degradation of H2a, including the initial endoproteolytic cleavage generating the 35-kD intermediate, is blocked by the protease inhibitors N-tosyl-L-lysine chloromethyl ketone and N-tosyl-L-phenylalanine chloromethyl ketone. These drugs do not inhibit ER-to-Golgi transport of H1. Depleting the cells of ATP or inhibiting protein synthesis allows the initial endoproteolytic cleavage to occur, but blocks further degradation of the 35-kD intermediate; thus we can convert all cellular H2 into the 35-kD intermediate. Approximately 50% of H2b, a splicing variant differing from H2a by a five amino acid deletion, can be transported to the cell surface, and the rest appears to be degraded by the same pathway as H2a, both when expressed alone in fibroblasts and together with H1 in HepG2 cells. Addition of N-tosyl-L-lysine chloromethyl ketone or N-tosyl-L-phenylalanine chloromethyl ketone blocks degradation of the approximately 50% that is not transported, but does not affect the fraction of H2b that moves to the Golgi region. Thus, a protein destined for degradation will not be transported to the Golgi region if degradation is inhibited.  相似文献   

3.
Human asialoglycoprotein receptor H1 and H2b subunits assemble into a hetero-oligomer that travels to the cell surface. The H2a variant on the other hand is a precursor of a cleaved soluble form that is secreted. Uncleaved H2a precursor molecules cannot exit the endoplasmic reticulum (ER), a lumenal juxtamembrane pentapeptide being responsible for their retention. Insertion of this pentapeptide into H1 (H1i5) causes its complete ER retention but not fast degradation as happens to H2a. Cotransfection of H2a elicited, by heterodimerization, the Golgi processing of H1i5 and its surface expression. This occurred to a much lesser extent by cotransfection of H2b. Likewise, coexpression of H1i5 and not H1 stabilized H2a and caused its export to the cell surface. Homodimerization of molecules containing the pentapeptide did not cancel the retention. Thus, only when the pentapeptide is present in both subunits is the ER retention efficiently abrogated. The results show the unexpected finding that identical ER retention signals present in two associated chains can mask and cancel each other's effect. This could have important implications as similar abrogation of ER retention of other proteins could eventually be obtained by engineering and coexpressing an associated protein containing the same retention signal.  相似文献   

4.
The primary translation product of haptoglobin mRNA is a 45-kD polypeptide which is proteolytically cleaved shortly after its synthesis. Previous studies have indicated that the cleavage of this proform of haptoglobin occurs in the ER. In an attempt to characterize the cleaving enzyme, we found that upon incubation of microsomes from rat hepatocytes pulse labeled with [35S]methionine, little cleavage of labeled prohaptoglobin occurred. In contrast, when cells whose cytoplasmic proteins had been released by saponin treatment were incubated, 30-40% of the prohaptoglobin was cleaved. The addition of GTP caused a twofold stimulation, which was abolished by the nonhydrolyzable analog GTP gamma S. With a homogenate of the cells, the addition of GTP resulted in a fourfold stimulation of the degree of cleavage--from 15 to 60%. Differential centrifugation revealed that most of the cleaving activity resided in membranes sedimenting similarly to mitochondria and to a small fraction of the ER. These rapidly sedimenting membranes were therefore prepared from a rat liver homogenate. Upon treatment with high salt, light membranes were released which, when incubated with microsomes of pulse-labeled hepatocytes in the presence of detergent (and in the absence of GTP), induced specific cleavage of prohaptoglobin. The cleaving enzyme had an alkaline pH optimum indicating that it was not of lysosomal origin. These results suggest that cleavage of prohaptoglobin occurs in a subcompartment of the ER. Apparently, the connection between this compartment and the bulk of the ER is broken upon saponin treatment or homogenization but can be reestablished through a process requiring GTP hydrolysis.  相似文献   

5.
Alzheimer’s disease (AD) is characterized by the buildup of amyloid-β peptides (Aβ) aggregates derived from proteolytic processing of the β-amyloid precursor protein (APP). Amyloidogenic cleavage of APP by β-secretase/BACE1 generates the C-terminal fragment C99/CTFβ that can be subsequently cleaved by γ-secretase to produce Aβ. Growing evidence indicates that high levels of C99/CTFβ are determinant for AD. Although it has been postulated that γ-secretase-independent pathways must control C99/CTFβ levels, the contribution of organelles with degradative functions, such as the endoplasmic reticulum (ER) or lysosomes, is unclear. In this report, we investigated the turnover and amyloidogenic processing of C99/CTFβ in human H4 neuroglioma cells, and found that C99/CTFβ is localized at the Golgi apparatus in contrast to APP, which is mostly found in endosomes. Conditions that localized C99/CTFβ to the ER resulted in its degradation in a proteasome-dependent manner that first required polyubiquitination, consistent with an active role of the ER associated degradation (ERAD) in this process. Furthermore, when proteasomal activity was inhibited C99/CTFβ was degraded in a chloroquine (CQ)-sensitive compartment, implicating lysosomes as alternative sites for its degradation. Our results highlight a crosstalk between degradation pathways within the ER and lysosomes to avoid protein accumulation and toxicity.  相似文献   

6.
R Kettunen  E Tyystjrvi    E M Aro 《Plant physiology》1996,111(4):1183-1190
Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.  相似文献   

7.
Kuma H  Shinde AA  Howren TR  Jennings ML 《Biochemistry》2002,41(10):3380-3388
The topology of the band 3 (AE1) polypeptide of the erythrocyte membrane is not fully established despite extensive study. Residues near lysine 743 (K743) have been reported to be extracellular in some studies and cytoplasmic in others. In the work presented here, we have attempted to establish the sidedness of K743 using in situ proteolysis. Trypsin, papain, and proteinase K do not cleave band 3 at or near K743 in intact red cells, even under conditions that cause cleavage on the C-terminal side of the glycosylation site (N642) in extracellular loop 4. In contrast, trypsin sealed inside red cell ghosts cleaves at K743, as does trypsin treatment of inside-out vesicles (IOVs). The transport inhibitor 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H(2)DIDS), acting from the extracellular side, blocks trypsin cleavage at K743 in unsealed membranes by inducing a protease-resistant conformation. H(2)DIDS added to IOVs does not prevent cleavage at K743; therefore, trypsin cleavage at K743 in IOVs is not a consequence of cleavage of right-side-out or leaky vesicles. Finally, microsomes were prepared from HEK293 cells expressing the membrane domain of AE1 lacking the normal glycosylation site. This polypeptide does not traffic to the surface membrane; trypsin treatment of microsomes containing this polypeptide produces the 20 kDa fragment, providing further evidence that K743 is exposed at the cytoplasmic surface. Therefore, the actions of trypsin on intact cells, resealed ghosts, unsealed ghosts, inside-out vesicles, and microsomes from HEK293 cells all indicate that K743 is cytoplasmic and not extracellular.  相似文献   

8.
The H2a subunit of the human asialoglycoprotein receptor is rapidly degraded from the endoplasmic reticulum (ER) when expressed in CHO15B cells. We have reconstituted ER degradation of H2a in semipermeable cells. At least the initial step in degradation (a proteolytic cleavage inhibited by N alpha-p-tosyl-L-lysine chloromethyl ketone and L-1-tosylamido-2-phenylethyl chloromethyl ketone) can occur in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate or in the absence of ATP and postnuclear supernatant, conditions that do not allow vesicular transport of subunit H1 from the ER to the Golgi. We conclude that vesicular transport from the ER is not required for ER degradation of H2a to occur and thus that it takes place in the ER itself.  相似文献   

9.
We have identified a pentapeptide region of microinjected ribonuclease A that is required for enhanced degradation of this protein during serum withdrawal. We introduced reductively methylated [3H]ribonuclease A, [3H]ribonuclease S-protein (residues 21-124), and [3H]ribonuclease S-peptide (residues 1-20) into the cytosol of human fibroblasts by red cell-mediated microinjection and osmotic lysis of pinosomes. The degradative rates of ribonuclease A and ribonuclease S-peptide are increased 2-fold upon withdrawal of serum, while catabolism of ribonuclease S-protein is not regulated in this manner. Certain fragments of ribonuclease S-peptide are also degraded in a serum-dependent fashion (residues 1-14 and 4-13), while other fragments are not (residues 1-10 and 2-8). [3H]Ribonuclease S-peptide is cleaved into two smaller radioactive peptides during loading into red cell ghosts. We tentatively identified the larger fragment as residues 7-11 based on its molecular weight determined by Sephadex chromatography in the presence of 8 M urea combined with sequential Edman degradation to identify the position of radioactive lysines. The smaller peptide fragment appears to be the amino-terminal dipeptide, Lys-Glu, and/or residues 7-8, Lys-Phe. After microinjection into fibroblasts, the pentapeptide is degraded at an enhanced rate in the absence of serum, while degradation of the dipeptide is not affected. We confirmed that residues 7-11 constitute the larger hydrolysis product of S-peptide by synthesizing this pentapeptide and radiolabeling it by reductive methylation. It migrated at the expected position after Sephadex chromatography in 8 M urea and was further hydrolyzed only slightly during loading into red cells. Finally, degradation of this pentapeptide after injection into fibroblasts was enhanced 2-fold upon serum withdrawal. These results, combined with our other recent studies (McElligott, M. A., Miao, P., and Dice, J. F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that the pentapeptide, Lys-Phe-Glu-Arg-Gln, targets microinjected ribonuclease A to lysosomes for enhanced degradation during serum deprivation.  相似文献   

10.
I Sekler  M Weiss    U Pick 《Plant physiology》1994,105(4):1125-1132
Trypsin treatment of purified H(+)-ATPase from plasma membranes of the extreme acidophilic alga Dunaliella acidophila enhances ATP hydrolysis and H+ pumping activities. The activation is associated with an alkaline pH shift, an increase in Vmax, and a decrease in Km(ATP). The activation is correlated with cleavage of the 100-kD ATPase polypeptide to a fragment of approximately 85 kD and the appearance of three minor hydrophobic fragments of 7 to 8 kD, which remain associated with the major 85-kD polypeptide. The N-terminal sequence of the small fragments has partial homology to residues 713 to 741 of Arabidopsis thaliana plasma membrane H(+)-ATPases. Incubation of cells with 32P-labeled orthophosphate (32Pi) results in incorporation of 32P into the ATPase 100-kD polypeptide. Trypsin treatment of the 32Pi-labeled ATPase leads to complete elimination of label from the approximately 85-kD polypeptide. Cleavage of the phosphorylated enzyme with endoproteinase Glu-C (V-8) yields a phosphorylated 12-kD fragment. Peptide mapping comparison between the 100-kD and the trypsinized 85-kD polypeptides shows that the 12-kD fragment is derived from the trypsin-cleaved part of the enzyme. The N-terminal sequence of the 12-kD fragment closely resembles a C-terminal stretch of an ATPase from another Dunaliella species. It is suggested that trypsin activation of the D. acidophila plasma membrane H(+)-ATPase results from elimination of an autoinhibitory domain at the C-terminal end of the enzyme that carries a vicinal phosphorylation site.  相似文献   

11.
The photosystem II reaction center D1 protein is known to turn over frequently. This protein is prone to irreversible damage caused by reactive oxygen species that are formed in the light; the damaged, nonfunctional D1 protein is degraded and replaced by a new copy. However, the proteases responsible for D1 protein degradation remain unknown. In this study, we investigate the possible role of the FtsH protease, an ATP-dependent zinc metalloprotease, during this process. The primary light-induced cleavage product of the D1 protein, a 23-kD fragment, was found to be degraded in isolated thylakoids in the dark during a process dependent on ATP hydrolysis and divalent metal ions, suggesting the involvement of FtsH. Purified FtsH degraded the 23-kD D1 fragment present in isolated photosystem II core complexes, as well as that in thylakoid membranes depleted of endogenous FtsH. In this study, we definitively identify the chloroplast protease acting on the D1 protein during its light-induced turnover. Unlike previously identified membrane-bound substrates for FtsH in bacteria and mitochondria, the 23-kD D1 fragment represents a novel class of FtsH substrate-functionally assembled proteins that have undergone irreversible photooxidative damage and cleavage.  相似文献   

12.
Polyclonal antibodies raised against rat vesicle associated membrane protein-2 (VAMP-2) recognized, in carrot (Daucus carota) microsomes, two major polypeptides of 18 and 30 kD, respectively. A biochemical separation of intracellular membranes by a sucrose density gradient co-localized the two polypeptides as resident in light, dense microsomes, corresponding to the endoplasmic reticulum-enriched fractions. Purification of coated vesicles allowed us to distinguish the subcellular location of the 18-kD polypeptide from that of 30 kD. The 18-kD polypeptide is present in the non-clathrin-coated vesicle peak. Like other VAMPs, the carrot 18-kD polypeptide is proteolyzed by tetanus toxin after separation of coatomers. Amino acid sequence analysis of peptides obtained by digestion of the 18-kD carrot polypeptide with the endoproteinase Asp-N confirms it to be a member of the VAMP family, as is suggested by its molecular weight, vesicular localization, and toxin-induced cleavage.  相似文献   

13.
Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment during drug- and UV light–induced apoptosis; this fragment comigrates with K18 cleaved in vitro by caspase-6, -3, and -7. K18 is cleaved by caspase-6 into NH2-terminal, 26-kD and COOH-terminal, 22-kD fragments; caspase-3 and -7 additionally cleave the 22-kD fragment into a 19-kD fragment. The cleavage site common for the three caspases was the sequence VEVD/A, located in the conserved L1-2 linker region of K18. The additional site for caspases-3 and -7 that is not cleaved efficiently by caspase-6 is located in the COOH-terminal tail domain of K18. Expression of K18 with alanine instead of serine at position 53 demonstrated that cleavage during apoptosis does not require phosphorylation of serine 53. However, K18 with a glutamate instead of aspartate at position 238 was resistant to proteolysis during apoptosis. Furthermore, this cleavage site mutant appears to cause keratin filament reorganization in stably transfected clones. The identification of the L1-2 caspase cleavage site, and the conservation of the same or very similar sites in multiple other intermediate filament proteins, suggests that the processing of IFs during apoptosis may be initiated by a similar caspase cleavage.  相似文献   

14.
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly.  相似文献   

15.
Quality control in the endoplasmic reticulum (ER) determines the fate of newly synthesized glycoproteins toward either correct folding or disposal by ER-associated degradation. Initiation of the disposal process involves selective trimming of N-glycans attached to misfolded glycoproteins by ER alpha-mannosidase I and subsequent recognition by the ER degradation-enhancing alpha-mannosidase-like protein family of lectins, both members of glycosylhydrolase family 47. The unusual inverting hydrolytic mechanism catalyzed by members of this family is investigated here by a combination of kinetic and binding analyses of wild type and mutant forms of human ER alpha-mannosidase I as well as by structural analysis of a co-complex with an uncleaved thiodisaccharide substrate analog. These data reveal the roles of potential catalytic acid and base residues and the identification of a novel (3)S(1) sugar conformation for the bound substrate analog. The co-crystal structure described here, in combination with the (1)C(4) conformation of a previously identified co-complex with the glycone mimic, 1-deoxymannojirimycin, indicates that glycoside bond cleavage proceeds through a least motion conformational twist of a properly predisposed substrate in the -1 subsite. A novel (3)H(4) conformation is proposed as the exploded transition state.  相似文献   

16.
Analysis of the fate of HIV-1 envelope protein gp160 (Env) has shown that newly synthesized proteins may be degraded within the biosynthetic pathway and that this degradation may take place in compartments other than the lysosomes. The fate of newly synthesized Env was studied in living BHK-21 cells with the recombinant vaccinia virus expression system. We found that gp160 not only undergoes physiological endoproteolytic cleavage, producing gp120, but is also degraded, producing proteolytic fragments of 120 kDa to 26 kDa in size, as determined by SDS/PAGE in non reducing conditions. Analysis of the 120-kDa proteolytic fragment, and comparison with gp120, showed that it is composed of peptides linked by disulfides bonds and lacks the V3-loop epitope and the C-terminal domain of gp120 (amino acids 506-516). A permeabilized cell system, with impaired transport of labeled Env from the endoplasmic reticulum (ER) to Golgi compartments, was developed to determine the site of degradation and to define some biochemical characteristics of the intracellular degradation process. In the semipermeable BHK-21 cells, there was: (a) no gp120 production (b), a progressive decrease in the amount of newly synthesized gp160 and a concomitant increase in the amount of a 120-kDa proteolytic fragment. This fragment had the same biochemical characteristics as the 120-kDa proteolytic fragment found in living nonpermeabilized cells, and (c) susceptibility of the V3 loop. This degradation process occurred in the ER, as shown by both biochemical and indirect immunofluorescence analysis. Furthermore, there was evidence that changes in redox state are involved in the ER-dependent envelope degradation pathway because adding reducing agents to permeabilized cells caused dose-dependent degradation of the 120-kDa proteolytic fragment and of the remaining gp160 glycoprotein. Thus our results provide direct evidence that regulated degradation of the HIV-1 envelope glycoprotein may take place in the ER of infected cells.  相似文献   

17.
A new protein of feline infectious peritonitis coronavirus (FIPV) was discovered in lysates of [35S]cysteine-labeled infected cells. Expression of open reading frame (ORF) 6b of FIPV in recombinant vaccinia virus-infected cells was used to identify it as the 6b protein. Further characterization revealed that it is a novel type of viral glycoprotein whose function is not clear. It is a soluble protein contained in microsomes; its slow export from the cell is caused by the presence of an endoplasmic reticulum (ER) retention signal at the C terminus. This amino acid sequence, KTEL, closely resembles the consensus KDEL signal of soluble resident ER proteins. A mutant 6b protein with the C-terminal sequence KTEV became resistant to digestion by endo-beta-N-acetylglucosaminidase H with a half-time that was reduced threefold. In contrast, a mutant with the sequence KDEL was completely retained in the ER. The FIPV 6b protein is the first example of a viral protein with a functional KDEL-like ER retention signal.  相似文献   

18.
Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3delta) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.  相似文献   

19.
The distribution of cytochrome b5 in rat liver microsomes, and in two microsomal subfractions isolated by density equilibration in a linear sucrose gradient, was studied under the electron microscope by means of a ferritin-labeled hybrid anti-cytochrome b5/anti-ferritin antibody. Results of this study show that cytochrome b5 is present in essentially all microsomal vesicles derived from endoplasmic reticulum (ER), whether rough or smooth. Thus, the dissociation of ER constituents into two groups (b and c), achieved by subfractionating microsomes by isopycnic centrifugation (Beaufay, H., A. Amar-Costesec, D. Thines- Sempoux, M. Wibo, M. Robbi, and J. Berthet. 1974. J. Cell Biol. 61:213- 231), does not reflect the association of each group with distinct microsomal particles but reflects rather an enzymatic heterogeneity of the ER: the ratio of group c to group b enzymes increasing with the density and ribosome load of the particles.  相似文献   

20.
Summary The anion transport domain of the anion exchange protein (AEP) of human erythrocyte membranes (band 3, 95 kD mol wt) was probed with the substrate and affinity label pyridoxal-5-phosphate (PLP). Acting from outside, this probe labels two chymotryptic fragments of 65 and 35 kD of AEP but only the 35-kD fragment is protected from labeling by reversibly acting disulfonic stilbenes (DS). It is shown here by functional studies and by immunoblotting with anti-PLP antibodies that transmembrane gradients of anions determine the availability of a 35-kD fragmentlys residue to surface labeling by PLP, in analogy with their effects on labeling of 65-kD fragment by DS. On this basis, it is suggested that both fragments contribute to the formation of the transport domain. However, unlike DS, PLP blocks transport when reacted from within resealed membranes, indicating that the 35-kD fragment might contain components of the mobile unit of the AEP. Using impermeant fluorescence quenchers of PLP of both complexation type (anti-PLP antibodies) or collisional type (acrylamide) as topological probes for PLP-labeled sites, it is deduced that the 65-kD PLP-labeled and the 35-kD PLP-labeledlys groups are inaccessible to macromolecules from either surface, but the 65-kD PLP-lys is accessible to low molecular weight molecules from without while the 35-kD PLP-labeledlys shows accessibility primarily from within the cell surface. The studies indicate that the accommodation of a wide class of anions by AEP might be associated with the flexibility of the transport domain of the protein and its capacity to undergo transport-related conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号