首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epidermolysis bullosa simplex (EBS) is a dominantly inherited genodermatosis characterized by intraepidermal blister formation. Recent reports have suggested that EBS mutations may relate to keratin abnormalities. In this study, we conducted RFLP analyses to test the hypothesis that EBS is linked to one of the keratin gene clusters on chromosome 12 or chromosome 17. Although these keratin gene loci are not defined by RFLPs, several mapped RFLPs in the same chromosomal regions could be tested for linkage. A large EBS family with 14 affected and 12 unaffected individuals in three generations was analyzed for RFLP inheritance. Within this family there was no evidence for linkage of the EBS mutation to markers on chromosome 17q. However, there was evidence for close linkage to D12S17 located on chromosome 12q, with a maximum LOD score of 5.55 at theta = 0. Mapping of this mutation to chromosome 12 defines an EBS locus distinct from both EBS1 (Ogna) and EBS2 (Koebner), which are on chromosomes 8 and 1, respectively. Further mapping will determine whether this EBS locus on chromosome 12 resides within the keratin gene cluster at 12q11-q13.  相似文献   

2.
Lysinuric protein intolerance (LPI) is an autosomal recessive disease characterized by defective transport of cationic amino acids and by hyperammonemia. Linkage analysis in 20 Finnish LPI families assigned the LPI gene locus to the proximal long arm of chromosome 14. Recombinations placed the locus between framework markers D14S72 and MYH7, a 10-cM interval in which the markers D14S742, D14S50, D14S283, and TCRA showed no recombinations with the phenotype. The phenotype was in highly significant linkage disequilibrium with markers D14S50, D14S283, and TCRA. The strongest allelic association obtained with marker TCRA, resulting in a P(excess) value of .98, suggests that the LPI gene locus lies in close proximity to this marker, probably within a distance of < 100 kb.  相似文献   

3.
We report that a gene responsible for familial hypertrophic cardiomyopathy (HC) is closely linked to the cardiac alpha and beta myosin heavy chain (MHC) genes on chromosome 14q11. We have recently shown that probe CRI-L436, derived from the anonymous DNA locus D14S26, detects a polymorphic restriction fragment that segregates with familial HC in affected members of a large Canadian family. Using chromosomal in situ hybridization, we have mapped CRI-L436 to chromosome 14 at q11-q12. Because the cardiac MHC genes also map to this chromosomal band, we have determined the genetic distances between the cardiac beta MHC gene, D14S26, and the familial HC locus. Data presented here show that these three loci are linked within 5 centimorgans on chromosome 14 at q11-q12. The possibility that defects in either the cardiac alpha or beta MHC genes are responsible for familial HC is discussed.  相似文献   

4.
The tumors of patients with small cell lung carcinoma (SCLC) frequently exhibit the loss of alleles at polymorphic loci on the short arm of chromosome 3. We report the genotype analysis of six SCLC patients obtained using 15 chromosome 3 probes that identified 19 restriction fragment length polymorphisms (RFLPs). Five of the six patients were reduced to homozygosity in the tumor DNA at every informative 3p locus, and thus did not serve to delineate the deletion. However, the RFLP analysis of the tumor DNA of the sixth patient demonstrated both heterozygous and hemizygous loci on 3p and allowed the definition of an interstitial deletion that extends proximal to the D3S2 locus at 3p14.2-p21 to include at least 3p13-p14. The exclusion of the D3F15S2 locus from the deleted region, observed in this patient, is an uncharacteristic feature of SCLC deletions. This deletion includes the location of D3S30 and D3S4, and thus serves to map these loci within the proximal half of chromosome 3.  相似文献   

5.
A (GT)n repeat within the anonymous DNA sequence D21S156 was shown to be highly polymorphic in DNA from members of the 40 CEPH families. At least 12 alleles of this locus were recognized by electrophoresis on polyacrylamide gels of DNA amplified by the polymerase chain reaction (PCR) using primers flanking the (GT)n repeat. The polymorphism information content was 0.82. PCR amplification of DNA from somatic cell hybrid lines mapped D21S156 to human chromosome 21 and linkage analysis localized this marker close to the loci ETS2, D21S3, and HMG14 on chromosomal band 21q22.3. This polymorphism is highly informative and can serve as an anchor locus for human chromosome 21.  相似文献   

6.
Summary Molecular characterization of a ring chromosome 14 was carried out in a patient with the 46,XX,r(14) karyotype. The breakpoints shown by chromosome banding were within bands p11 and q32. Using molecular probes for the immunoglobulin heavy chain (IGH), D14S1 and PI loci located at 14q32, we showed that the IGH and D14S1 loci, located at 14q32.2 and 14q32.2, respectively, were deleted on the ring chromosome 14, but that the PI locus was not. Therefore, the chromosomal break lies between PI and D14S1. These results show that the order of these chromosome 14 markers is cen-PI-D14S1-IGH, in keeping with multipoint linkage data. Further molecular characterization of ring 14 chromosomes should lead to a detailed understanding of the molecular events and clinical consequences of the gene deletion associated with such chromosomal aberrations.  相似文献   

7.
The loci DNF15S1 and DNF15S2 are members of a small repetitive sequence family at discrete chromosomal locations, namely, 1p36 and 3p21, respectively. Studies of the structure, arrangement, and interrelations of the family suggest that the single copy on chromosome 3 is the original member and that this gave rise to the several members on chromosome 1 by transposition, partial duplication, and amplification. Several restriction fragment length polymorphisms have been discovered at the DNF15S1 locus and these have been assigned to the different subfamilies of the repeat at this locus. The existence of these RFLPs, and the nonallelic restriction site variation also found in this sequence family, suggests that transposition and amplification occurred as discrete events. We sequenced across the ancient junction between chromosomes 1 and 3 and noted features which might explain the mechanics of the transposition and amplification events.  相似文献   

8.
A genetic linkage map of 27 loci on the short arm of human chromosome 1 has been developed by analysis of the 40 families in the Centre d'Etude du Polymorphisme Humain (CEPH) reference panel. Probes that recognize 14 novel RFLPs at loci designated D1S9-D1S22 were isolated from a flow-sorted chromosome 1 library. A linkage map of chromosome 1p was constructed from the genotypic data at these 14 loci, RFLPs at eight cloned genes (PND, ALPL, FUCA1, SRC2, MYCL, GLUT, TSHB, and NGFB), two previously identified RFLPs (D1S2 and D1S57), two blood group antigens (RH and FY), and the isozyme PGM1. All 27 loci form a continuous linkage group, from FY to PND, of 102 cM in males and 230 cM in females. This map provides a basis for highly informative multipoint mapping studies for most of the short arm of chromosome 1.  相似文献   

9.
We recently described an autosomal dominant inclusion-body myopathy characterized by congenital joint contractures, external ophthalmoplegia, and predominantly proximal muscle weakness. A whole-genome scan, performed with 161 polymorphic markers and with DNA from 40 members of one family, indicated strong linkage for markers on chromosome 17p. After analyses with additional markers in the region and with DNA from eight additional family members, a maximum LOD score (Zmax) was detected for marker D17S1303 (Zmax=7.38; recombination fraction (theta)=0). Haplotype analyses showed that the locus (Genome Database locus name: IBM3) is flanked distally by marker D17S945 and proximally by marker D17S969. The positions of cytogenetically localized flanking markers suggest that the location of the IBM3 gene is in chromosome region 17p13.1. Radiation hybrid mapping showed that IBM3 is located in a 2-Mb chromosomal region and that the myosin heavy-chain (MHC) gene cluster, consisting of at least six genes, co-localizes to the same region. This localization raises the possibility that one of the MHC genes clustered in this region may be involved in this disorder.  相似文献   

10.
The chromosomal location of the gene encoding human prostate-specific acid phosphatase (ACPP) was determined by Southern blotting analysis of panels of human x rodent (mouse or Chinese hamster) somatic cell hybrids, using the PAP-1007 and PAP-1004EP ACPP cDNA probes. The ACPP gene was assigned to chromosome 3, which was confirmed by screening a chromosome 3-specific genomic library. Sublocalization of this gene was carried out using hybrids that had retained only various portions of human chromosome 3. The ACPP gene was found to segregate specifically with the chromosomal segment 3q21----qter. Analysis of Southern blots of TaqI-digested DNAs from unrelated individuals and members of large families from northern Finland revealed two simultaneous diallelic restriction fragment length polymorphisms (RFLPs), A and B, when using either PAP-1004EP or PAP-1006A ACPP cDNA probes, but not the 5' flanking PAP-1007 probe. Allele frequencies for polymorphism A were .09 (A1) and .91 (A2), and for polymorphism B, .38 (B1) and .62 (B2). There appears to be only a very minor linkage disequilibrium (chi 2 = 1.12, 0.35 greater than P greater than 0.25) between the two TaqI RFLPs at the ACPP locus. For reasons presently unknown, homozygotes for polymorphism B appear to be overrepresented. These polymorphisms could be of importance in characterizing human prostate cancer.  相似文献   

11.
A genetic map of human chromosome 22 has been derived from physical assignments and multilocus linkage analysis. It consists of the loci for the immunoglobulin lambda light-chain variable (IGLV) and immunoglobulin lambda light-chain constant (IGLC) regions, myoglobin (MB), the sis proto-oncogene (SIS), and an arbitrary probe (D22S1). The first RFLPs at the loci for SIS, IGLV, and MB are described. The most likely gene order on the basis of multilocus analysis was cen-(IGLV-IGLC)-D22S1-MB-SIS. This map provides further evidence for localization of the P1 polymorphism of the P blood group to chromosome 22, close to the SIS locus. Analysis of families segregating recessive congenital methemoglobinemia (RCM), a disease in which the cytochrome b5 reductase is defective, as well as of families with cases of hereditary low levels of cytochrome b5 reductase activity, confirmed that the locus responsible for RCM is on chromosome 22. Biochemical studies had already suggested that mutation at the cytochrome b5 reductase locus (DIA1) is responsible for RCM. We found no evidence of genetic heterogeneity between the families segregating RCM and the families exhibiting cases of low cytochrome b5 reductase activity. Linkage analysis indicated that the most probable location of DIA1 lies between MB and SIS.  相似文献   

12.
Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen–ADA–D20S17–qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [unk] = .005. These markers and dinucleotide repeat markers associated with the D20S43, D20S46, D20S55, D20S75, and PLC1 loci and RFLPs at the D20S16, D20S17, D20S22, and D20S33 have been used to map the MODY locus on chromosome 20 to a 13-cM (sex averaged) interval encompassing ADA, D20S17, PPGB, D20S16, and D20S75 on the long arm of chromosome 20 and to create a genetic framework for additional genetic and physical mapping studies of the region. With these multiple highly polymorphic loci, any MODY family of appropriate size can be tested for the chromosome 20 linkage.  相似文献   

13.
Two polymorphic loci within the interferon-alpha receptor (IFNAR) gene on human chromosome 21 have been identified and mapped by linkage analysis in 40 CEPH families. These markers are (1) a multiallelic RFLP with an observed heterozygosity of 0.72 and (2) a variable (AT3)n short sequence repeat at the poly(A) tail of an Alu sequence (AluVpA) with an observed heterozygosity of 0.83. This locus is close to D21S58 (theta = 0.02, zeta = 36.76) and D21S17 (theta = 0.02, Zeta = 21.76) with chromosomal band 21q22.1. Multipoint linkage analysis suggests the most likely locus order to be 21cen-D21S58-IFNAR-D21S17-21qter. Given its high heterozygosity, the IFNAR gene can be used as an index marker on human chromosome 21.  相似文献   

14.
Summary Presymptomatic testing for Huntington's disease (HD) is possible through the use of restriction fragment length polymorphisms (RFLPs) at the closely linked D4S10 locus. Recombination between the HD and D4S10 loci will occur in 4%–5% of meioses, and is a well-recognised complication of predictive testing. Recombination between RFLPs within the D4S10 locus is a rare event and can usually be ignored. We report a case where such an intra-locus recombination frustrated attempts to predict the chance of a high-risk individual inheriting the HD gene.  相似文献   

15.
Summary An (AC)n repeat within the anonymous DNA sequence D21S171 was shown to be highly polymorphic in members of the 40 Centre d'Etude du Polymorphisme Humain (CEPH) families. Ten different alleles at this marker locus were detected by electrophoresis on polyacrylamide gels of DNA amplified by the polymerase chain reaction (PCR) using primers flanking the (AC)n repeat. The observed heterozygosity was 66%. PCR amplification of DNA from somatic cell hybrids mapped D21S171 to human chromosome 21, and linkage analysis localized this marker close to the loci CD18, PFKL, D21S113 and D21S112 in chromosomal band 21q22.3. In CEPH family 12 a de novo allele has been observed in a maternally derived chromosome.  相似文献   

16.
Restriction fragment length polymorphisms (RFLPs) were observed in BamHI-digested mouse DNA probed with a cDNA for human fibronectin. Analysis of the inheritance of fibronectin RFLPs in AKXD and SWXJ recombinant inbred strains of mice mapped the locus, Fn-1, to the midregion of mouse chromosome 1 about 4 cM distal from the loci encoding gamma-crystallins (Cryg). Loci homologous to genes in the centromeric third of mouse chromosome 1 are also syntenic in rats, humans, and cattle and may, therefore, mark a large conserved chromosomal segment of the mammalian genome.  相似文献   

17.
Atopy describes a syndrome of immunoglobulin E (IgE)-mediated allergy that underlies asthma and infantile eczema. We have previously identified a locus on chromosome 13q14 that is linked to atopy and to the total serum immunoglobulin A concentration. We have therefore made a saturation genetic map of the region by typing 59 polymorphic microsatellite loci on chromosome 13q. Multipoint linkage analysis identified a 1-LOD support unit for the location of the atopy locus with a 7.5-cM region flanked by the loci D13S328 and D13S1269. The peak of linkage was at locus D13S161 with a nonparametric -log of P score of approximately 4.5. Parent of origin effects were present, with linkage primarily observed to paternally derived alleles. The genetic map of this region provides a basis for the effective identification of the chromosome 13 atopy gene.  相似文献   

18.
The genes encoding the regulatory subunits RI beta (locus PRKAR1B) and RII beta (locus PRKAR2B) of human cAMP-dependent protein kinase have been mapped in the basic CEPH (Centre d'Etude du Polymorphisme Humain) family panel of 40 families to chromosome 7p and 7q, respectively, using the enzymes HindIII and BanII recognizing the corresponding restriction fragment length polymorphisms (RFLPs). Previous data from the CEPH database and our present RFLP data were used to construct a six-point local framework map including PRKAR1B and a seven-point framework map including PRKAR2B. The analysis placed PRKAR1B as the most distal of the hitherto mapped 7p marker loci and resulted in an unequivocal order of pter-PRKAR1B-D7S21-D7S108-D7S17-D7S149- D7S62-cen, with a significantly higher rate of male than female recombination between PRKAR1B and D7S21. The 7q regulatory gene locus, PRKAR2B, could also be placed in an unambigous order with regard to the existing CEPH database 7q marker loci, the resulting order being cen-D7S371-(COL1A2,D7S79)-PRKAR2B-MET-D7S87++ +-TCRB-qter. Furthermore, in situ hybridization to metaphase chromosomes physically mapped PRKAR2B to band q22 on chromosome 7.  相似文献   

19.
A DNA segment D20S5 isolated from a chromosome 19/20 flow-sorted library was shown to identify two restriction fragment length polymorphisms (RFLPs) with MspI and PvuII. The probe was localized by hybridization in situ to 20p12, the putative site of an interstitial deletion in some MEN 2A and 2B patients. Linkage of the D20S5 and MEN 2A loci was excluded at theta less than or equal to .13 using two large MEN 2A kindreds. These data suggest that the MEN 2A locus may not lie within 20p12 as previously suggested.  相似文献   

20.
The alpha 3, alpha 5, and beta 4 genes (human gene symbols CHRNA3, CHRNA5, and CHRNB4 respectively; mouse gene symbols Acra-3, Acra-5, and Acrb-4, respectively) are members of the nicotinic acetylcholine receptor gene family and are clustered within a 68-kb segment of the rat genome (Boulter et al., 1990, J. Biol. Chem. 265:4472). By somatic cell hybrid analysis, three cDNAs corresponding to these genes were used to map the homologous loci to human chromosome 15 and to mouse chromosome 9. Linkage analysis using CEPH pedigrees showed that the CHRNA5 gene was closely linked to the following chromosome 15 loci: D15S46, D15S52, D15S28, D15S34, and D15S35. Using interspecies crosses in mice, the Acra-5 gene was found closely linked to the Mpi-1 locus. The mapping of these members of a neurotransmitter receptor gene family may facilitate the identification of relationships between the neurotransmitter receptors and murine or human phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号