首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent binding studies in the central nervous system and other tissues provide evidence that the mammalian bombesin-like peptides, gastrin-releasing peptide (GRP) and neuromedin-B (NMB), exert their numerous physiological effects through at least two different receptors. We describe the structure and expression of a cloned NMB-preferring bombesin receptor (NMB-R) with properties distinct from a GRP-preferring bombesin receptor (GRP-R) reported previously. In particular, the NMB-R shows higher affinity binding to NMB than to GRP in BALB 3T3 fibroblasts expressing the cloned NMB-R. The distinct regional distribution of NMB-R and GRP-R mRNA in the brain suggests that both bombesin receptor subtypes play independent roles in mediating many of the dramatic effects of bombesin-like peptides in the central nervous system.  相似文献   

2.
The 27-amino acid peptide gastrin-releasing peptide (GRP) and the decapeptide neuromedin B (NMB) are structurally related to bombesin (BB) and exist within the mammalian small intestine. We examined the actions of porcine GRP and NMB on ion transport in the porcine proximal jejunum in vitro and compared their activities to those of their respective C-terminal amphibian homologs BB and ranatensin (RT). The 4 peptides transiently increased potential difference and short-circuit current (Isc) in jejunal mucosal sheets after their serosal administration in subnanomolar concentrations with an order of potency: GRP approximately RT greater than or equal to NMB greater than BB. BB and RT were more effective in elevating Isc than GRP and NMB; all peptides had variable effects on tissue conductance. Mucosal Isc responses to GRP (1 nM) were due in part to a stimulation of net Cl- secretion. GRP-induced Isc increases were halved by serosal furosemide (0.3 mM) and reduced by 65% and 90% in tissue bathing solutions lacking Cl- or Cl- and HCO3-, respectively. Tetrodotoxin reduced Isc responses to the peptide by 40%; GRP activity remained unaffected after blockade of gut muscarinic or nicotinic cholinergic receptors by atropine or hexamethonium, respectively. These results suggest that GRP and its natural homologs stimulate active electrogenic Cl- secretion in the porcine jejunum through interactions with GRP receptors located in the intestinal mucosa and submucosa.  相似文献   

3.
Neuromedin B (NMB) is one of the bombesin-like peptides in mammals. Recently, bombesin-like peptides have been characterized as growth factors in highly vascularized tumors. In this study, we report that NMB potently stimulates in vivo neovascularization in a mouse Matrigel plug and the sprouting of endothelial cells ex vivo in rat aortic rings. In addition, NMB increases the migration and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with NMB activates the extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS) and increases the level of NO production in a dose- and time-dependent manner. Furthermore, ERK activation and angiogenic sprouting in response to NMB are significantly blocked by the MEK inhibitor. Inhibition of phosphatidylinositol 3-kinase (PI3K) suppresses the NMB-stimulated tubular formation of HUVECs, along with reduction in the phosphorylation of Akt and eNOS. Taken together, these results indicate that NMB is a novel angiogenic peptide, and its angiogenic activity is mediated by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent pathways. This study suggests that NMB may play important roles in mediating a variety of pathophysiological angiogenesis.  相似文献   

4.
The amphibian peptide bombesin (BN) and the related mammalian peptides gastrin-releasing peptide (GRP) and neuromedin B (NMB) inhibit gastric emptying in rats. Exogenous administration of BN stimulates the release of cholecystokinin (CCK), a gastrointestinal peptide that also potently inhibits gastric emptying. To determine whether the inhibition of gastric emptying by BN-like peptides is mediated by a CCK-dependent mechanism, we examined the ability of the CCK-A receptor antagonist, devazepide, to block the inhibition of saline gastric emptying produced by BN, GRP18-27 and NMB. Using the same dosages as in the gastric emptying experiment, we also evaluated the effect of devazepide on feeding suppression produced by systemically administered BN. Our results showed that devazepide completely blocked the suppression of gastric emptying produced by BN, GRP18-27 and NMB but had no effect on BN-induced suppression of food intake. These results suggest that BN-like peptides inhibit gastric emptying through an indirect mechanism that is dependent upon CCK-A receptor activation. In contrast, the suppression of food intake by BN, in this experimental paradigm, is independent of CCK-A receptors.  相似文献   

5.
The antagonistic effects of [D-Phe25]gastrin-releasing peptide (GRP)(18-27) and [D-Arg1,D-Pro2,D-Trp7,9,Leu11]substance P (SP) on the stimulation of insulin release by GRP(18-27) from isolated canine pancreas were compared with that of [Ala23]GRP(18-27). The stimulation of insulin release by 1 nM GRP(18-27) was reduced to 24.1% and 15.4% by the prior infusion of 1 microM of [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP and 10 microM of [D-Phe25]GRP(18-27), respectively. Glucagon release by GRP(18-27) was not affected by these peptides using the above concentrations. The results indicate that these peptides are antagonists of bombesin-like peptide receptors on pancreatic B-cells, although the inhibitory activities are lower than that of [Ala23]GRP(18-27).  相似文献   

6.
Moody TW  Merali Z 《Peptides》2004,25(3):511-520
As we commemorate the 25th anniversary of the journal Peptides, it is timely to review the functional significance of the bombesin (BB)-like peptides and receptors in the CNS. Over two decades ago we published an article in the journal Peptides demonstrating that BB-like peptides are present in high densities in certain rat brain regions (such as the paraventricular nucleus of the hypothalamus). Subsequently, one of the mammalian forms of BB, gastrin-releasing peptide (GRP) containing cell bodies were found in the suprachiasmatic nucleus of the hypothalamus and nucleus of the solitary tract of the hindbrain. Another related peptide, namely neuromedin (NM)B, was detected in the olfactory bulb and dentate gyrus. BB and GRP bind with high affinity to BB(2) receptors, whereas NMB binds with high affinity to BB(1) receptors. The actions of BB or GRP are blocked by BB(2) receptor antagonists such as (Psi(13,14)-Leu(14))BB whereas PD168368 is a BB(1) receptor antagonist. Exogenous administration of BB into the rat brain causes hypothermia, hyperglycemia, grooming and satiety. BB-like peptides activate the sympathetic nervous system and appear to modulate stress, fear and anxiety responses. GRP and NMB modulate distinct biological processes through discrete brain regions or circuits, and globally these peptidergic systems may serve in an integrative or homeostatic function.  相似文献   

7.
Small cell lung cancer (SCLC) patients suffer from pulmonary stresses such as dyspnea and chest pain, and the pathogenic mechanisms are not known. SCLC cells secrete a variety of bioactive neuropeptides, including bombesin-like peptides. We hypothesize that these peptides may enhance the sensitivity of the pulmonary chemosensitive nerve endings, contributing to the development of these pulmonary stresses in SCLC patients. This study was therefore carried out to determine the effects of bombesin and gastrin-releasing peptide (GRP), a major bombesin-like peptide, on the sensitivities of pulmonary chemoreflex and isolated pulmonary vagal chemosensitive neurons. In anesthetized, spontaneously breathing rats, intravenous infusion of bombesin or GRP significantly amplified the pulmonary chemoreflex responses to chemical stimulants such as capsaicin and ATP. The enhanced responses were completely abolished by perineural capsaicin treatment of both cervical vagi, suggesting the involvement of pulmonary C-fiber afferents. In isolated pulmonary vagal chemosensitive neurons, pretreatment with bombesin or GRP potentiated the capsaicin-induced Ca(2+) transient. This sensitizing effect was further demonstrated in patch-clamp recording studies; the sensitivities of these neurons to both chemical (capsaicin and ATP) and electrical stimuli were significantly enhanced by the presence of either bombesin or GRP. In summary, our results have demonstrated that bombesin and GRP upregulate the pulmonary chemoreflex sensitivity in vivo and the excitability of isolated pulmonary chemosensitive neurons in vitro.  相似文献   

8.
The binding of [125I]gastrin releasing peptide ([125I]GRP) to Swiss 3T3 cells at 37 degrees C increases rapidly, reaching a maximum after 30 min and decreasing afterwards. The decrease in cell-associated radioactivity at this temperature is accompanied by extensive degradation of the labelled peptide. At 4 degrees C equilibrium binding is achieved after 6 h and [125I]GRP degradation is markedly inhibited. Extraction of surface-bound ligand at low pH demonstrates that the iodinated peptide is internalized within minutes after addition to 3T3 cells at 37 degrees C. The rate of internalization is strikingly temperature-dependent and is virtually abolished at 4 degrees C. In addition, lysomotropic agents including chloroquine increase the cell-associated radioactivity in cells incubated with [125I]GRP. The binding of [125I]GRP to Swiss 3T3 cells was not affected by pretreatment for up to 24 h with either GRP or bombesin at mitogenic concentrations. Furthermore, pretreatment with GRP did not reduce the affinity labelling of a Mr 75,000-85,000 surface protein recently identified as a putative receptor for bombesin-like peptides. These results demonstrate that while peptides of the bombesin family are rapidly internalized and degraded by Swiss 3T3 cells, the cell surface receptors for these molecules are not down-regulated.  相似文献   

9.
Gastrin-releasing peptide (GRP) is a member of bombesin-like peptides and bombesin and neuromedin B are other members of this family. They act on receptors that belong to the GPCR superfamily and exert important physiological functions upon binding to their receptors. The biologically active C-terminal decapeptide of GRP (GRP10) was studied in explicit DMPC bilayers using molecular dynamics simulations. In the initial conformation, the peptide was placed perpendicular to the membrane plane and the peptide-membrane complex with approximately 20,000 atoms was simulated for a period of 8 ns. After a 5 ns simulation, GRP10 adopted a tilted orientation and the tilt angle with respect to the bilayer normal was approximately 60 masculine. Analysis of the interactions of individual residues indicated the role of histidine residues in maintaining a tilted orientation.  相似文献   

10.
11.
Bombesin-like peptides are uniformly thought to act as mitogens in cancer. Yet by studying human tissues, we have recently shown that bombesin and its mammalian homologue gastrin-releasing peptide act as morphogens, promoting tumor differentiation when aberrantly upregulated in colon cancer. In contrast, little is known about the bombesin-like peptide neuromedin B (NMB) and its receptor (NMB-R) in the human gastrointestinal tract. We therefore studied their presence and function in normal and malignant human colonic epithelia. Anti-NMB monoclonal antibodies were made against keyhole limpet hemocyanin (KLH)-conjugated human NMB, whereas anti-NMB-R antibodies were raised in rabbits against KLH-conjugated peptides corresponding to the third intracellular loop and COOH-terminal tail of the receptor protein. NMB antibody recognized two bands at approximately 1.2 kDa and approximately 1.5 kDa. NMB-R antibodies recognized a band at 80 kDa (predicted 43 kDa); whereas treatment with the deglycosylating agent peptide-N-glycosidase generated bands at 65, 47, and 43 kDa. By immunohistochemistry, both NMB and NMB-R were expressed in normal and cancerous colonic epithelial tissues. In cancer, the amount of NMB was similar to that expressed by proliferating epithelial cells located within the crypt. In contrast, NMB-R expression was increased in cancer, with higher levels detected in better differentiated tumor cells. To assess NMB function, proliferation was determined in the nonmalignant human colonic epithelial cell line NCM-460 and in the colon cancer cell lines Caco-2 and HT-29. Exogenously added NMB was 50-100% more efficacious than gastrin-releasing peptide in causing tumor cell proliferation, whereas only NMB increased NCM-460 cell proliferation. These findings indicate that NMB and its receptor are coexpressed by proliferating cells in which they act in an autocrine fashion with similar and modest potency in both normal and malignant colonic epithelial cells.  相似文献   

12.
J Jensen  J M Conlon 《Peptides》1992,13(5):995-999
Immunohistochemical studies have established that fish gastrointestinal tissues contain peptides with gastrin-releasing peptide (GRP)/bombesin-like immunoreactivity, but the molecular nature of this material is unclear. In this study, the most abundant peptide that was immunoreactive towards an antiserum raised against pig GRP was isolated in pure form from an extract of the stomach of the rainbow trout (Oncorhynchus mykiss). The primary structure of the peptide was established as: Ser-Glu-Asn-Thr-Gly-Ala-Ile-Gly-Lys-Val10- Phe-Pro-Arg-Gly-Asn-His-Trp-Ala-Val-Gly20-His-Leu-Met-NH2. Although this amino acid sequence is shorter than those of mammalian GRPs by four residues, the COOH-terminal dodecapeptide is identical to the corresponding region in pig GRP. The data indicate, therefore, that the predominant molecular form of GRP in the stomach of a teleost fish is structurally more similar to mammalian GRP than to the amphibian skin peptide, bombesin.  相似文献   

13.
Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18–27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of 125I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used 125I-GRP and chemical cross-linking techniques to characterized the mouse pancreatic BN receptor. After binding of 125I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18–27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of 125I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.  相似文献   

14.
Bombesin-peptide (BLP) immunoreactivity occurs at high levels in fetal lung. Previous studies showed that bombesin promotes fetal lung development. To test the hypothesis that such effects are mediated by known mammalian bombesin receptors [gastrin-releasing peptide (GRP)/bombesin-preferring receptor (GRPR), neuromedin B (NMB) receptor (NMBR), and the orphan bombesin receptor subtype-3 (BRS-3)], we analyzed the ontogeny of GRPR, NMBR, and BRS-3 gene expression in mouse lung. We examined the regulation of these three genes by dexamethasone and bombesin, which modulate lung development. Using incorporation of [3H]thymidine and [3H]choline, we then assessed whether GRP, NMB, and Leu8-phyllolitorin modulate lung growth and maturation in fetal lung explants. GRPR gene expression was detected predominantly in utero, whereas NMBR and BRS-3 genes were expressed from embryonic days 13-16 and on multiple postnatal days. All three mRNAs are present in airway epithelium and mesenchymal cells but occur in different relative patterns. These genes were regulated differently. Dexamethasone and bombesin increased GRPR mRNA, bombesin downregulated NMBR, and neither agent affected BRS-3. GRP increased incorporation of [3H]thymidine and [3H]choline in explants, whereas NMB induced cell proliferation and Leu8-phyllolitorin yielded variable results. Cumulative data suggest the involvement of multiple BLP receptors, including novel molecules, and argue against simple functional redundancy within this gene family during lung development.  相似文献   

15.
Pruritus (itch) is a severe side effect associated with the use of drugs as well as hepatic and hematological disorders. Previous studies in rodents suggest that bombesin receptor subtypes i.e. receptors for gastrin-releasing peptide (GRPr) and neuromedin B (NMBr) differentially regulate itch scratching. However, to what degree spinal GRPr and NMBr regulate scratching evoked by intrathecally administered bombesin-related peptides is not known. The first aim of this study was to pharmacologically compare the dose-response curves for scratching induced by intrathecally administered bombesin-related peptides versus morphine, which is known to elicit itch in humans. The second aim was to determine if spinal GRPr and NMBr selectively or generally mediate scratching behavior. Mice received intrathecal injection of bombesin (0.01–0.3 nmol), GRP (0.01–0.3nmol), NMB (0.1–1nmol) or morphine (0.3–3 nmol) and were observed for one hour for scratching activity. Bombesin elicited most profound scratching over one hour followed by GRP and NMB, whereas morphine failed to evoke scratching response indicating the insensitivity of mouse models to intrathecal opioid-induced itch. Intrathecal pretreatment with GRPr antagonist RC-3095 (0.03–0.1 nmol) produced a parallel rightward shift in the dose response curve of GRP-induced scratching but not NMB-induced scratching. Similarly, PD168368 (1–3 nmol) only attenuated NMB but not GRP-induced scratching. Individual or co-administration of RC-3095 and PD168368 failed to alter bombesin-evoked scratching. A higher dose of RC-3095 (0.3 nmol) generally suppressed scratching induced by all three peptides but also compromised motor function in the rotarod test. Together, these data indicate that spinal GRPr and NMBr independently drive itch neurotransmission in mice and may not mediate bombesin-induced scratching. GRPr antagonists at functionally receptor-selective doses only block spinal GRP-elicited scratching but the suppression of scratching at higher doses is confounded by motor impairment.  相似文献   

16.
The cross-linking agent ethylene glycol-bis(succinimidyl succinate) was used to covalently link 125I-labeled gastrin releasing peptide (125I-GRP) to an Mr 75,000-85,000 surface protein in Swiss 3T3 cells that displays many characteristics of a specific receptor for peptides of the bombesin family. This protein was not present in other cell lines which do not exhibit receptors for bombesin-like peptides. Unlabeled GRP competed for affinity labeling of the Mr 75,000-85,000 protein in a concentration-dependent manner, and other bombesin-related peptides also inhibited the cross-linking of 125I-GRP to this component. In contrast, high concentrations of a variety of other peptide hormones and mitogens had no effect. Affinity labeling of the Mr 75,000-85,000 protein was dependent on the concentration of 125I-GRP and exhibited saturability. 125I-GRP affinity labeling of this protein was also demonstrated by two-dimensional gel electrophoresis. These studies suggest that an Mr 75,000-85,000 surface protein with an isoelectric point of 6.0 to 6.5 is a major component of the receptor for peptides of the bombesin family in Swiss 3T3 cells.  相似文献   

17.
Origin of bombesin-like peptides in human fetal lung   总被引:2,自引:0,他引:2  
Four different forms of bombesin-like immunoreactive peaks were detected in extracts of human fetal lung by the use of reversed-phase high performance liquid chromatography (HPLC). Peaks I, II, III and IV, (increasing retention time), were eluted using a 14-38% of acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Peak II was the major material found in the extract of human fetal lung obtained at 16-20 weeks gestation. None of the four compounds contained in the eluted peaks had the same retention time as amphibian bombesin or porcine gastrin releasing peptide (GRP). On reversed-phase HPLC using two different solvent systems TFA or heptafluorobutyric acid (HFBA) as a hydrophobic counter ion, and in gel filtration chromatography, the chromatographic behavior of the main peak (peak II) was the same as that of the carboxyl terminal fragments of GRP, GRP18-27 or GRP19-27. This suggested that the peptide(s) in peak II resembled in composition the carboxy terminal 9 or 10 amino acids of porcine GRP. Following tryptic digestion the material in peak IV was converted to the more polar compound present in peak II. Two other peptide peaks were eluted close to peak II and these were presumed to be a modification of this main peak. One of the possible biosynthetic steps in the formation of bombesin-like peptides in human fetal lung could be a tryptic conversion of a less polar peptide to a more polar form (peak IV to II).  相似文献   

18.
The mammalian bombesin (Bn)-receptor family [gastrin-releasing peptide-receptor (GRPR-receptor), neuromedin B-receptor (NMB receptor)], their natural ligands, GRP/NMB, as well as the related orphan receptor, BRS-3, are widely distributed, and frequently overexpressed by tumors. There is increased interest in agonists for this receptor family to explore their roles in physiological/pathophysiological processes, and for receptor-imaging/cytotoxicity in tumors. However, there is minimal data on human pharmacology of Bn receptor agonists and most results are based on nonhuman receptor studies, particular rodent-receptors, which with other receptors frequently differ from human-receptors. To address this issue we compared hNMB-/GRP-receptor affinities and potencies/efficacies of cell activation (assessing phospholipase C activity) for 24 putative Bn-agonists (12 natural, 12 synthetic) in four different cells with these receptors, containing native receptors or receptors expressed at physiological densities, and compared the results to native rat GRP-receptor containing cells (AR42J-cells) or rat NMB receptor cells (C6-glioblastoma cells). There were close correlations (r = 0.92-99, p < 0.0001) between their affinities/potencies for the two hGRP- or hNMB-receptor cells. Twelve analogs had high affinities (≤1 nM) for hGRP receptor with 15 selective for it (greatest = GRP, NMC), eight had high affinity/potencies for hNMB receptors and four were selective for it. Only synthetic Bn analogs containing β-alanine11 had high affinity for hBRS-3, but also had high affinities/potencies for all GRP-/hNMB-receptor cells. There was no correlation between affinities for human GRP receptors and rat GRP receptors (r = 0.131, p = 0.54), but hNMB receptor results correlated with rat NMB receptor (r = 0.71, p < 0.0001). These results elucidate the human and rat GRP-receptor pharmacophore for agonists differs markedly, whereas they do not for NMB receptors, therefore potential GRP-receptor agonists for human studies (such as Bn receptor-imaging/cytotoxicity) must be assessed on human Bn receptors. The current study provides affinities/potencies on a large number of potential agonists that might be useful for human studies.  相似文献   

19.
The ability of bombesin-like peptides to elevate intracellular Ca2+ levels in small cell lung cancer cells was investigated using the fluorescent Ca2+ indicator Fura 2. Nanomolar concentrations of bombesin elevated cytosolic Ca2+ levels in the absence or presence of extracellular Ca2+. Potent bombesin receptor agonists, such as gastrin releasing peptide (GRP) or (GRP)14-27 elevated cytosolic Ca2+ levels whereas inactive compounds such as (D-Trp8)bombesin or (GRP)1-16 did not. Furthermore, the bombesin receptor antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11) substance P (30 microM) had no effect on the Ca2+ levels by itself but antagonized the increase in Ca2+ caused by 10 nM or 100 nM bombesin. These data suggest that bombesin receptors may regulate the release of Ca2+ from intracellular organelles in small cell lung cancer cells.  相似文献   

20.
The amidated decapeptide neuromedin B (NMB) is the mammalian homolog of the amphibian bombesin-like peptide ranatensin. cDNAs encoding human neuromedin B and amphibian ranatensin were isolated from human hypothalamic and Rana pipiens skin libraries, respectively. Sequence analysis revealed that NMB is encoded in a 76-amino acid precursor and ranatensin in an 82-amino acid precursor. In the NMB preprohormone, the sequence of the large form of NMB (NMB-22) immediately follows the signal peptide and is, in turn, followed by a dibasic cleavage site and a 17-amino acid carboxyl-terminal extension peptide. The structure for the ranatensin preprohormone is very similar. RNA blot analysis shows two NMB mRNA species, each approximately 800 bases, with wide distribution in brain and gastrointestinal tract. Genomic DNA blot analysis is consistent with a single human NMB gene. Analysis of mouse-human somatic cell hybrids indicates that this gene is localized on the long arm of human chromosome 15. Since the gene for human gastrin-releasing peptide is on chromosome 18, this analysis demonstrates that the bombesin-like peptide genes are not clustered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号