首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glutamate:glyoxylate aminotransferase from green parts of 7-day-old rye seedlings was purified almost to homogeneity. Specific activity of the purified enzyme measured with L-glutamate and glyoxylate as substrates, was 46.1 units/mg. The enzyme activity with L-alanine and 2-oxoglutarate as substrates was higher by a factor of 1.5, whereas with L-alanine and glyoxylate or L-glutamate and pyruvate it was similar to that with L-glutamate and glyoxylate. L-Aspartate, L-arginine and L-ornithine could also serve as substrate. The reaction followed the Ping-Pong Bi Bi mechanism and Km values for L-glutamate and glyoxylate were 2.6 and 0.5 mM, respectively. Pyridoxal phosphate was found to be the coenzyme of glutamate-glyoxylate aminotransferase. This coenzyme was rather tightly bound with the enzyme protein, as the attempts at its complete resolution from the apoenzyme were unsuccessful. Pyridoxal phosphate, 2-mercaptoethanol and sucrose, or bovine serum albumin stabilized the enzyme. Molecular weight of glutamate:glyoxylate aminotransferase from rye seedlings, determined by SDS-polyacrylamide gel electrophoresis, was 58,800 +/- 2,100, whereas molecular sieving on Sephacryl S-200 gel gave values of 70,800 +/- 700 or 61,400. Similar values obtained for the denatured and nondenatured enzyme seem to indicate that it is a monomeric protein.  相似文献   

2.
The photorespiratory enzyme L-serine:glyoxylate amino- transferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The f'mal enzyme was approximately 80 % pure as revealed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis. The molecular mass estimated by gel filtration chromato- graphy on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa, 42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum pH value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55 % of that observed with L-serine and glyoxylate. The lower Kmvalue (1.25 mM) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approxi- mately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 mM for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1:7 for the recombinant SGAT. Native SGAT showed a much lower Km value for L-alanine compared to the recombinant enzyme.  相似文献   

3.
Serine:glyoxylate aminotransferase (EC 2.6.1.45) from green parts of 7-day-old rye seedlings was purified 600-fold. Specific activity of the purified enzyme against L-serine and glyoxylate as substrates was 53.2 mumol/mg protein per minute at 30 degrees C. The enzyme activity with L-alanine or L-asparagine and glyoxylate, or with L-asparagine and hydroxypyruvate was 20% that with L-serine and glyoxylate as the amino group acceptor, whereas with L-alanine or glycine and hydroxypyruvate it was 10% of that value. The reaction rate with pyruvate and L-asparagine, glycine or L-serine was very low. The enzyme was stabilized by the presence of sucrose, pyridoxal phosphate and 2-mercaptoethanol. Molecular sieving of the native enzyme on Sephacryl S-300 gel gave Mr values of 91,200 and 85,000, whereas the molecular weight estimated by SDS-polyacrylamide gel electrophoresis was 43,000, indicating the dimeric structure of the enzyme.  相似文献   

4.
A novel reductase displaying high specificity for glyoxylate and NADPH was purified 3343-fold from spinach leaves. The enzyme was found to be an oligomer of about 125 kDa, composed of four equal subunits of 33 kDa each. A Km for glyoxylate was about 14-fold lower with NADPH than with NADH (0.085 and 1.10 mM respectively), but the maximal activity, 210 mumol/min per mg of protein, was similar with either cofactor. Km values for NADPH and NADH were 3 and 150 microM respectively. Optimal rates with either NADPH or NADH were found in the pH range 6.5-7.4. The enzyme also showed some reactivity towards hydroxypyruvate with rates less than 2% of those observed for glyoxylate. Results of immunological studies, using antibodies prepared against either glyoxylate reductase or spinach peroxisomal hydroxypyruvate reductase, suggested substantial differences in molecular structure of the two proteins. The high rates of NADPH(NADH)-glyoxylate reductase in crude leaf extracts of spinach, wheat and soya bean (30-45 mumol/h per mg of chlorophyll) and its strong affinity for glyoxylate suggest that the enzyme may be an important side component of photorespiration in vivo. In leaves of nitrogen-fixing legumes, this reductase may also be involved in ureide breakdown, utilizing the glyoxylate produced during allantoate metabolism.  相似文献   

5.
Serine: glyoxylate aminotransferase (EC 2.6.1.45) from rye seedlings catalysed transamination between L-serine and glyoxylate according to the Ping Pong Bi Bi mechanism with double substrate inhibition. As judged from the Km values, L-serine, L-alanine, and L-asparagine served as substrates for the enzyme with glyoxylate, whereas L-alanine and L-asparagine underwent transamination with hydroxypyruvate as acceptor. Pyridoxal phosphate (PLP) seems to be rather loosely bound to the enzyme protein. Aminooxyacetate and D-serine were found to be pure competitive inhibitors of the enzyme, with Ki values of 0.12 microM and 1.6 mM, respectively. Among the PLP inhibitors isonicotinic acid hydrazide and hydroxylamine were far less effective than aminooxyacetate (20% and 70% inhibition at 0.1 mM concentration, respectively). Inhibition by the SH group inhibitors at 1 mM concentration did not exceed 50%. L-Serine distinctly diminished the inhibitory effect of this type inhibitors. Preincubation of the enzyme with glyoxylate distinctly diminished transamination. Glyoxylate limited the inhibitory action of formaldehyde probably by competing for the reactive groups present in the active centre.  相似文献   

6.
Euglena gracilis induced glyoxylate cycle enzymes when ethanol was fed as a sole carbon source. We purified, cloned and characterized a bifunctional glyoxylate cycle enzyme from E. gracilis (EgGCE). This enzyme consists of an N-terminal malate synthase (MS) domain fused to a C-terminal isocitrate lyase (ICL) domain in a single polypeptide chain. This domain order is inverted compared to the bifunctional glyoxylate cycle enzyme in Caenorhabditis elegans, an N-terminal ICL domain fused to a C-terminal MS domain. Purified EgGCE catalyzed the sequential ICL and MS reactions. ICL activity of purified EgGCE increased in the existence of acetyl-CoA at a concentration of micro-molar order. We discussed the physiological roles of the bifunctional glyoxylate cycle enzyme in these organisms as well as its molecular evolution.  相似文献   

7.
A new strictly anaerobic, gram-negative, nonsporeforming bacterium, Strain PerGlx1, was enriched and isolated from marine sediment samples with glyoxylate as sole carbon and energy source. The guanineplus-cytosine content of the DNA was 44.1±0.2 mol %. Glyoxylate was utilized as the only substrate and was stoichiometrically degraded to carbon dioxide, hydrogen, and glycolate. An acetyl-CoA and ADP-dependent glyoxylate converting enzyme activity, malic enzyme, and pyruvate synthase were found at activities sufficient for growth (0.25 U x mg protein-1). These findings allow to design a new degradation pathway for glyoxylate: glyoxylate is condensed with acetyl-CoA to form malyl-CoA; the free energy of the thioester linkage in malyl-CoA is conserved by substrate level phosphorylation. Part of the electrons released during glyoxylate oxidation to CO2 reduce a small fraction of glyoxylate to glycolate.  相似文献   

8.
The enzyme L-alanine:4,5-dioxovalerate aminotransferase (EC 2.6.1.43), which catalyzes the synthesis of 5-aminolevulinic acid, was purified 161-fold from Chlorella regularis. The enzyme also showed L-alanine:glyoxylate aminotransferase activity (EC 2.6.1.44). The activity of glyoxylate aminotransferase was 56-fold greater than that of 4,5-dioxovalerate aminotransferase. The ratio of the two activities remained nearly constant during purification, and when the enzyme was subjected to a variety of treatments. 4,5-Dioxovalerate aminotransferase activity was competitively inhibited by glyoxylate, with a Ki value of 0.5 mM. Double-reciprocal plots of velocity versus 4,5-dioxovalerate with varying L-alanine concentrations indicate a ping-pong reaction mechanism. The apparent Km values for 4,5-dioxovalerate and L-alanine were 0.12 and 3.5 mM, respectively. The enzyme is an acidic protein having an isoelectric point of 4.8. The molecular weight of the enzyme was estimated to be 126,000, with two identical subunits. These results suggest that, in Chlorella, as in bovine liver mitochondria and Euglena, both 4,5-dioxovalerate and glyoxylate aminotransferase activities are associated with the same protein. From the activity ratio of transamination and catalytic properties, it is concluded that this enzyme does not function primarily as a part of the 5-carbon pathway to 5-aminolevulinic acid synthesis.  相似文献   

9.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana.  相似文献   

10.
Schizosaccharomyces pombe has an open reading frame, which we named alr1(+), encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1(+) gene in Escherichia coli and purified the gene product (Alr1p), with an M(r) of 41,590, to homogeneity. Alr1p contains pyridoxal 5'-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent K(m) and V(max) values as follows: for L-alanine, 5.0 mM and 670 micromol/min/mg, respectively, and for D-alanine, 2.4 mM and 350 micromol/min/mg, respectively. The enzyme is almost specific to alanine, but L-serine and L-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of L-alanine, respectively. S. pombe uses D-alanine as a sole nitrogen source, but deletion of the alr1(+) gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for L-alanine coupled with racemization plays a major role in the catabolism of D-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses L-alanine but not D-alanine as a sole nitrogen source. Moreover, D-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1(+) gene enabled S. cerevisiae to grow efficiently on D-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of D-alanine.  相似文献   

11.
Two serine transhydroxymethylase activities have been purified from a facultative methylotrophic bacterium. One enzyme predominates when the organism is grown on methane or methanol as the sole carbon and energy source, whereas the second enzyme is the major isoenzyme found when succinate is used as the sole carbon and energy source. The enzyme from methanol-grown cells is activated by glyoxylate, is not stimulated by Mg2+, Mn2+, or Zn2+, and has four subunits of 50,000 molecular weight each. The enzyme from succinate-grown cells is not activated by glyoxylate and is stimulated by Mg2+, Mn2+, and Zn2+, and sodium dodecyl sulfate-acrylamide gel electrophoresis indicates that this enzyme has subunit molecular weight of 100,000, the same as the molecular weight obtained for the active enzyme. Cells grown in the presence of both methanol and succinate incorporate less methanol carbon per unit time than cells grown on methanol and have a lower specific activity of the glyoxylate-activated enzyme than methanol-grown cells. Adenine, glyoxylate, or trimethoprim in the growth medium causes an increased level of serine transhydroxymethylase in both methanol- and succinate-grown cells by stimulating the synthesis of the glyoxylate-activated enzyme.  相似文献   

12.
Two different aminotransferases, that have glyoxylate as the amino acceptor, have specific activities of 1 to 2 mumol . min-1 . mg of protein-1 in the isolated peroxisomal fraction from spinach leaves. Their properties were evaluated after separation on a hydroxylapatite column. Both enzymes had a Km for glyoxylate of 0.15 mM and an amino acid Km of 2 to 3 mM. Reactions proceeded by a Ping Pong Bi Bi mechanism. Serine:glyoxylate aminotransferase was relatively specific for both substrates and could only be slightly reversed with 100 mM glycine, although the Ki of glycine was 33 mM. The glutamate:glyoxylate amino-transferase protein was equally active in catalyzing an alanine:glyoxylate aminotransferase reaction, but the reverse reactions with 100 mM glycine were hardly measureable, although the Ki (glycine) was 8.7 mM. Protection against hydroxylamine inhibition from reaction with pyridoxal phosphate was used to investigate the specificity of amino acid binding. Substrate amino acids protected at about the same concentration as their Km, while glycine protected at its Ki concentration. Thus, the nearly irreversible catalysis with glycine is not due to a failure to bind glycine. The significance of a peroxisomal alanine:glyoxylate aminotransferase activity has not been incorporated into schemes for the oxidative photosynthetic carbon cycle.  相似文献   

13.
Most of the malic enzyme activity in the brain is found in the mitochondria. This isozyme may have a key role in the pyruvate recycling pathway which utilizes dicarboxylic acids and substrates such as glutamine to provide pyruvate to maintain TCA cycle activity when glucose and lactate are low. In the present study we determined the activity and kinetics of malic enzyme in two subfractions of mitochondria isolated from cortical synaptic terminals, as well as the activity and kinetics in mitochondria isolated from primary cultures of cortical neurons and cerebellar granule cells. The synaptic mitochondrial fractions had very high mitochondrial malic enzyme (mME) activity with a Km and a Vmax of 0.37 mM and 32.6 nmol/min/mg protein and 0.29 mM and 22.4 nmol/min mg protein, for the SM2 and SM1 fractions, respectively. The Km and Vmax for malic enzyme activity in mitochondria isolated from cortical neurons was 0.10 mM and 1.4 nmol/min/mg protein and from cerebellar granule cells was 0.16 mM and 5.2 nmol/min/mg protein. These data show that mME activity is highly enriched in cortical synaptic mitochondria compared to mitochondria from cultured cortical neurons. The activity of mME in cerebellar granule cells is of the same magnitude as astrocyte mitochondria. The extremely high activity of mME in synaptic mitochondria is consistent with a role for mME in the pyruvate recycling pathway, and a function in maintaining the intramitochondrial reduced glutathione in synaptic terminals.  相似文献   

14.
In the phototrophic nonsulfur bacterium Rhodobacter capsulatus E1F1, L-alanine dehydrogenase aminating activity functions as an alternative route for ammonia assimilation when glutamine synthetase is inactivated. L-Alanine dehydrogenase deaminating activity participates in the supply of organic carbon to cells growing on L-alanine as the sole carbon source. L-Alanine dehydrogenase is induced in cells growing on pyruvate plus nitrate, pyruvate plus ammonia, or L-alanine under both light-anaerobic and dark-heterotrophic conditions. The enzyme has been purified to electrophoretic and immunological homogeneity by using affinity chromatography with Red-120 agarose. The native enzyme was an oligomeric protein of 246 kilodaltons (kDa) which consisted of six identical subunits of 42 kDa each, had a Stokes' radius of 5.8 nm, an s20.w of 10.1 S, a D20,w of 4.25 x 10(-11) m2 s-1, and a frictional quotient of 1.35. The aminating activity was absolutely specific for NADPH, whereas deaminating activity was strictly NAD dependent, with apparent Kms of 0.25 (NADPH), 0.15 (NAD+), 1.25 (L-alanine), 0.13 (pyruvate), and 16 (ammonium) mM. The enzyme was inhibited in vitro by pyruvate or L-alanine and had two sulfhydryl groups per subunit which were essential for both aminating and deaminating activities.  相似文献   

15.
These studies provide evidence for the presence of a microsomal ethanol oxidizing system in rat Leydig cells. Activity of the microsomal ethanol oxidizing system in Leydig cells was 47.4 +/- 4.1 nmol acetaldehyde per 20 min per mg protein, while activity in crude interstitial cells was 26.0 +/- 5.4 nmol. This suggests that among cells comprising interstitial cells, activity is concentrated in Leydig cells. Activity was linear with respect to protein concentration and incubation time. The highest specific activity was observed in the microsomal fraction. The most effective cofactor was NADPH. The apparent Km for ethanol was 4 mM, suggesting that this system could effectively metabolize ethanol at concentrations found in the blood of males who drink. The apparent Km for NADPH was 11 microM. The activity in Leydig cells was unaffected by 4-methylpyrazole or potassium cyanide, which inhibit alcohol dehydrogenase and catalase activities, respectively. These data provide strong evidence for an enzyme system in Leydig cell microsomes which is capable of metabolizing ethanol.  相似文献   

16.
E Uesaka  M Sato  M Raiju    A Kaji 《Journal of bacteriology》1978,133(3):1073-1077
An alpha-L-arabinofuranosidase (EC 3.2.1.55) from the culture fluid of Rhodotorula flava IFO 0407 grown on beet arabinan as a carbon source has been highly purified. The purified enzyme has a pH optimum of 2.0. The enzyme is unusually acid stable, retaining 82% of its activity after being maintained for 24 h at pH 1.5 and at 30 degrees C. The apparent Km and Vmax values of the enzyme for phenyl alpha-L-arabinofuranoside were determined to be 9.1 mM and 72.5 mumol per min per mg of protein, respectively.  相似文献   

17.
A single-gene nuclear mutant has been isolated in Saccharomyces cerevisiae which cannot grow on minimal medium supplemented with ethanol, acetate, pyruvate, aspartate, or oxaloacetate as sole carbon sources. It will grow on complete medium with these carbon sources, and on minimal medium with dextrose as carbon source. The only supplement which will permit growth on minimal medium with ethanol or pyruvate is aspartate, so the mutant is an aspartate auxotroph when grown on these nonfermentable substrates. It exhibits enhanced levels of phosphoenolpyruvate carboxykinase (EC 4.1.1.49) when grown on dextrose. The mutant can survive as an alcohol dehydrogenase-negative, indicating that the defect is not in the Krebs Cycle or in electron transport. When grown on pyruvate, it produces two to three times as much free alanine and half as much aspartate plus asparagine as the wild type. Two different assays show that the mutant phenotype is due to a deficiency of pyruvate carboxylase (EC 6.4.1.1), an important anaplerotic enzyme. Inferences that can be drawn from the characteristics of this mutant include (a) the glyoxylate cycle is probably located entirely outside the mitochondria, (b) the inner mitochondrial membrane appears to be impermeable to oxaloacetate, and (c) a succinate-malate exchange across the inner mitochondrial membrane connects the glyoxylate and Krebs cycles when yeast is grown on minimal medium with ethanol as a sole carbon source.  相似文献   

18.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were present in cell-free extracts of the phototrophic, green, thermophilic bacterium Chloroflexus aurantiacus grown with acetate as the sole organic carbon source.The optimum temperature of these enzymes was 40° C, and their specific activities were high enough to account for the observed growth rate. Lower levels of the enzymes were found in extracts from cells grown on a complete medium.Itaconate was shown to inhibit isocitrate lyase from C. aurantiacus 96% at a concentration of 0.25 mM and also had a profound effect on the growth of the organism on acetate, 0.25 mM inhibiting completely. Itaconate also inhibited the growth when added to the complex medium, but in this case much higher concentrations were required.  相似文献   

19.
Plant constituents such as terpenes are major constituents of the essential oil in Eucalyptus sp. 1,8-Cineole and p-cymene (Terpenes present in high amounts in Eucalyptus leaves) are potential substrates for the CYP family of enzymes. We have investigated tolbutamide hydroxylase as a probe substrate reaction in both koala and terpene pretreated and control brushtail possum liver microsomes and examined inhibition of this reaction by Eucalyptus terpenes. The specific activity determined for tolbutamide hydroxylase in the terpene treated brushtails was significantly higher than that for the control animals (1865+/-334 nmol/mg microsomal protein per min versus 895+/-27 nmol/mg microsomal protein per min). The activity determined in koala microsomes was 8159+/-370 nmol/mg microsomal protein per min. Vmax values and Km values for the terpene treated possum, control, possum and koala were 1932-2225 nmol/mg microsomal protein per min and 0.80 0.81 mM; 1406-1484 nmol/mg microsomal protein per min and 0.87-0.92 mM and 5895-6403 nmol/mg microsomal protein per min and 0.067-0.071 mM, respectively. Terpenes were examined as potential inhibitors of tolbutamide hydroxylase activity. 1,8-Cineole was found to be a competitive inhibitor for the enzyme responsible for tolbutamide hydroxylation (Ki 15 microM) in the possum. In koala liver microsomes stimulation of tolbutamide hydroxylase activity was observed when concentrations of cineole were increased. Therefore, although inhibition was observed, the type of inhibition could not be determined.  相似文献   

20.
The presence of isocitrate lyase and malate synthase was detected in cell-free extracts ofAcetobacter aceti, grown in a mineral medium with acetate as sole carbon source. The presence of these enzymes explains the ability of this strain to grow with ethanol or acetate as sole carbon source, which is an important characteristic in Frateur's classification system forAcetobacter. In addition to isocitrate lyase and malate synthase, these cell-free extracts were found to contain glyoxylate carboligase, tartronicsemialdehyde reductase and glycerate kinase. The induction of these enzymes during growth on acetate is thought to be caused by the very high activity of isocitrate lyase, which may lead to an accumulation of glyoxylate. The importance of this pathway in cells growing with acetate as sole carbon source for the synthesis of their carbohydrate components is discussed. The presence of the enzymes from the pathway from glyoxylate to 3-phosphoglycerate explains the ability of this strain to grow with ethyleneglycol and glycollate as sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号