首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The pathway encoded by the TOL catabolic pathway has been reported to be in two regulons. Attempts to isolate fully constitutive mutants of the plasmid encoded catechol meta cleavage pathway (the lower regulon) were unsuccessful. However mutants were obtained with altered inducer specificity of this regulon. This was accompanied by loss or alteration of inducer specificity with both regulons and could cause problems with the use of the TOL plasmid in specific strain construction work.  相似文献   

2.
Pseudomonas putida strains with plasmids carrying pleiotropic alk mutations gave rise to alkane-positive "revertants," which differ from wild type. Some had restricted ability to utilize alkane and primary alcohol growth substrates, and others could grow on undecane and dodecanol, which are not utilized by alk+ strains. These revertants showed altered responses to normal inducers of alkA+, alkB+, and alkC+ activities. Some revertants were constitutive for these activities. Constitutive mutants could also be isolated directly from wild type, but they appeared spontaneously at a frequency of less than 2 X 10(-8). Regulatory mutations of all three types, pleiotropic negative, altered inducer specificity, and constitutive, were tightly linked in transduction crosses with a polar alkB mutation. These results demonstrate that the IncP-2 plasmid alk gene cluster constitutes a regulon. They also permit the identification of at least one cistron whose gene product participates in inducer recognition and suggest that the alkABC regulon is not under simple repressor control.  相似文献   

3.
Two classes of alkaline phosphatase constitutive mutations which comprise the original phoS locus (genes phoS and phoT) on the Escherichia coli genome have been implicated in the regulation of alkaline phosphatase synthesis. When these mutations were introduced into a strain dependent on a single system, the pst system, for inorganic phosphate (P(i)) transport, profound changes in P(i) transport were observed. The phoT mutations led to a complete P(i) (-) phenotype in this background, and no activity of the pst system could be detected. The introduction of the phoS mutations changed the specificity of the pst system so that arsenate became growth inhibitory. Changes in the phosphate source led to changes in the levels of constitutive alkaline phosphatase synthesis found in phoS and phoT mutants. When glucose-6-phosphate or l-alpha-glycerophosphate was supplied as the sole source of phosphate, phoT mutants showed a 3- to 15- fold reduction in constitutive alkaline phosphatase synthesis when compared to the maximal levels found in limiting P(i) media. However, these levels were still 100 times greater than the basal level of alkaline phosphatase synthesized in wild-type strains under these conditions. The phoS mutants showed only a two- to threefold reduction when grown with organic phosphate sources. The properties of the phoT mutants selected on the basis of constitutive alkaline phosphatase synthesis were similar in many respects to those of pst mutants selected for resistance to growth inhibition caused by arsenate. It is suggested that the phoS and phoT genes are primarily involved in P(i) transport and, as a result of this function, play a role in the regulation of alkaline phosphatase synthesis.  相似文献   

4.
Transposon Tn10 was used to mutagenize the fadR gene in Escherichia coli. Mutants bearing fadR:Tn10 insertion mutations were found to (i) utilize the noninducing fatty acid decanoate as sole carbon source, (ii) beta-oxidize fatty acids at constitutive rates, and (iii) contain constitutive levels of the five key beta-oxidative enzymes. These characteristics were identical to those observed in spontaneous fadR mutants. The constitutive phenotype presented by the fadR:Tn10 mutants was shown to be genetically linked to the associated transposon-encoded drug resistance. These results suggest that the fadR gene product exerts negative control over the fatty acid degradative regulon. The fadR gene of E. coli has been mapped through the use of transposon-mediated fadR insertion mutations. The fadR locus is at 25.5 min on the revised map and cotransduces with purB, hemA, and trp. Three-factor conjugational and transductional crosses indicate that the order of loci in this region of the chromosome is purB-fadR-hemA-trp. Spontaneous fadR mutants were found to map at the same location. Strains that exhibit alterations in the control of the fad regulon in response to changes in temperature were also isolated and characterized. These fadR(Ts) mutants were constitutive for the fad enzymes at elevated temperatures and inducible for these activities at low temperatures. The fadR(Ts) mutations also map at the fadR locus. These results strongly suggest that the fadR gene product is a repressor protein.  相似文献   

5.
Two classes of D-serine deaminase (Dsdase)-specific secondary mutants of Escherichia coli K-12 were isolated from a Dsdase low constitutive nonhyperinducible mutant as types which could grow in the presence of both D-serine and glucose. These strains contain cis dominant, nonsuppressible mutations in the dsdO (operator-initiator) region. In the first class of mutants (e.g., FB4010), Dsdase synthesis is completely insensitive to catabolite repression, and synthesis occurs at a high constitutive rate in the absence of cyclic adenosine 5'-monophosphate. In the second class (e.g., FB4005), Dsdase synthesis is partially insensitive to catabolite repression, and catabolite repression is reversed by the addition of cyclic adenosine 5'-monophosphate. Dsdase synthesis in strain FB4005 is partially independent of the cyclic adenosine 5'-monophosphate binding protein, as constitutive synthesis is reduced only 65% (relative to the cap+ strain) in strains unable to synthesize the cyclic adenosine 5'-monophosphate binding protein. Surprisingly, the constitutive rate of Dsdase synthesis is fourfold higher in all mutants of both classes than in the parent, indicating a close interrelationship between the sites of response to induction and catabolite repression.  相似文献   

6.
The synthesis of manganese-superoxide dismutase in response to hydrogen peroxide and to paraquat was examined in strains of Escherichia coli with different mutations in the oxyR gene. Hydrogen peroxide treatment did not induce manganese-superoxide dismutase, but did induce the oxyR regulon. Paraquat induced this enzyme in a strain compromised in its ability to induce the defense response against oxidative stress (oxyR deletion) as well as in a strain that is constitutive and overexpresses the oxyR regulon. Catalase (HPI), but not manganese-superoxide dismutase, was over-expressed under anaerobic conditions in a strain harboring a constitutive oxyR mutation. The data clearly demonstrate that the induction of manganese-superoxide dismutase is independent of the oxyR-controlled regulon.  相似文献   

7.
8.
Expression of catabolite sensitive operons is repressed in E. coli mutants devoid of HPr--a component of glucose transport system. The ptsH mutants do not utilize the substrates for phosphoenolpyruvate dependent phosphotransferase system (PTS) except for fructose. Besides that, the mutants are deficient in utilization of many substrates entering the bacteria via the other transport systems. The ptsS mutation mapped in the region of the fructose regulon on the 46th min of the chromosomal map restores the growth of ptsH mutants on all substrates. The accumulation and PEP-dependent phosphorylation of proteins substrates of PTS is also restored. The synthesis of the fructose specific phosphotransferase system becomes constitutive under the effect of ptsS mutation. The mutation is supposed to impair the regulatory region of the fructose regulon.  相似文献   

9.
10.
Mutagenesis and subsequent selection of Arabidopsis thaliana plantlets on a growth inhibitory concentration of lysine has led to the isolation of lysine-resistant mutants. The ability to grow on 2 m M lysine has been used to isolate mutants that may contain an aspartate kinase with altered regulatory-feedback properties. One of these mutants (RL 4) was characterized by a relative enhancement of soluble lysine. The recessive monogenic nuclear transmission of the resistance trait was established. It was associated with an aspartate kinase less sensitive to feedback inhibition by threonine. Two mutants (RLT 40 and RL 4) in Arabidopsis, characterized by an altered regulation of aspartate kinase, were crossed to assess the effects of the simultaneous presence of these different aspartate kinase forms. A double mutant (RLT40 × RL4) was isolated and characterized by two feedback-desensitized isozymes of aspartate kinase to, respectively, lysine and threonine but no threonine and/or lysine overproduction was observed. Genetical analysis of this unique double aspartate kinase mutant indicated that both mutations were located on chromosome 2, but their loci (ak1and ak2) were found to be unlinked.  相似文献   

11.
Though RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations. Using an rpoS+ strain harboring an operon lacZ fusion to the highly-RpoS dependent osmY promoter as an indicator strain, we tested if this differential growth characteristic could be used to selectively isolate mutants that have lost RpoS function. All isolated (Suc+) mutants exhibited attenuated beta-galactosidase expression on indicator media suggesting a loss in either RpoS or osmY promoter function. Because all Suc+ mutants were also defective in catalase activity, an OsmY-independent, RpoS-regulated function, it was likely that RpoS activity was affected. To confirm this, we sequenced PCR-amplified products containing the rpoS gene from 20 independent mutants using chromosomal DNA as a template. Sequencing and alignment analyses confirmed that all isolated mutants possessed mutated alleles of the rpoS gene. Types of mutations detected included single or multiple base deletions, insertions, and transversions. No transition mutations were identified. All identified point mutations could, under selection for restoration of beta-galactosidase, revert to rpoS+. Revertible mutation of the rpoS gene can thus function as a genetic switch that controls expression of the regulon at the population level. These results may also help to explain why independent laboratory strains have acquired mutations in this important regulatory gene.  相似文献   

12.
A method for isolating regulatory mutants for the synthesis of lysine biosynthetic enzymes in Escherichia coli is described. One of them is identified as a cis-dominant constitutive mutant for the synthesis of the lysine-sensitive asportokinase AK III (lysC gene).  相似文献   

13.
A study was undertaken to isolate mutations affecting the temporal appearance of kynurenine hydroxylase in Drosophila melanogaster. Such mutations, lacking or having reduced enzyme activity at the larval or pupal stage only, could represent changes in regulatory functions. Mutagenesis was carried out using EMS. Potential mutations were isolated from mass F1 cultures. The screening of large numbers of individuals was made possible by the use of the mutant red, which allowed visual classification for the presence or absence of the enzyme at both stages. From a series of six mutagenesis experiments 111,561 chromosomes were tested, and 122 phenotypically mutant F1 individuals were found. From these, 38 inheritable mutations were isolated which, by phenotypic observation, lacked or had reduced enzyme activity at the larval and pupal stages. Assay of enzyme activity levels in several of the mutants confirmed the phenotypic data. All of the 27 mutations that could be tested further are recessive and behave as cinnabar alleles. Complementation tests were performed between these 27 mutant stocks, and no complementation in the production of eye color has been seen between the mutants examined. When extended collection periods were used, a significantly higher percentage of inheritable mutations was isolated from the first 3 days of the screen. Over 80% of the F1 phenotypic mutants could be classified as mosaics, which indicates that cinnabar can be autonomous under certain conditions. The failure to isolate mutations in possible regulatory function is discussed.  相似文献   

14.
A ribitol-positive transductant of Escherichia coli K-12, JM2112, was used to facilitate the isolation and identification of mutations affecting the L-fucose catabolic pathway. Analysis of L-fucose-negative mutants of JM2112 enabled us to confirm that L-fucose-1-phosphate is the apparent inducer of the fucose catabolic enzymes. Plating of an L-fuculokinase-negative mutant of JM2112 on D-arabinose yielded an isolate containing a second fucose mutation which resulted in the constitutive synthesis of L-fucose permease, isomerase, and kinase. This constitutive mutation differs from the constitutive mutation described by Chen et al. (J. Bacteriol. 159:725-729, 1984) in that it is tightly linked to the fucose genes and appears to be located in the gene believed to code for the positive activator of the L-fucose genes.  相似文献   

15.
Summary Galactose negative mutations are described which reduce the maximum expression of all three gal genes about 100-fold. The residual enzyme synthesis is not or only slightly inducible.These pleiotropic mutations map in the control region of the gal operon. No recombination is observed between these mutations. All mutants revert spontaneously to a Gal+ phenotype. In some mutations wildtype-like as well as constitutive revertants are obtained. The frequency of reversion can be increased by nitrosoguanidine (NG) in all mutants. The revertants, induced by this mutagen, are of a constitutive type.  相似文献   

16.
Regulatory mutants of the deo regulon in Salmonella typhimurium   总被引:2,自引:0,他引:2  
Summary A method is described for isolating mutants which are constitutive for thymidine phosphorylase. The mutants isolated are also constitutive for all of the enzymes of the deo regulon and are unlinked to the deo genes suggesting that they have a defect in a regulatory gene. We have designated this regulatory gene deo R.  相似文献   

17.
18.
Osmoregulation of the maltose regulon in Escherichia coli.   总被引:17,自引:14,他引:3       下载免费PDF全文
B Bukau  M Ehrmann    W Boos 《Journal of bacteriology》1986,166(3):884-891
The maltose regulon consists of four operons that direct the synthesis of proteins required for the transport and metabolism of maltose and maltodextrins. Expression of the mal genes is induced by maltose and maltodextrins and is dependent on a specific positive regulator, the MalT protein, as well as on the cyclic AMP-catabolite gene activator protein complex. In the absence of an exogenous inducer, expression of the mal regulon was greatly reduced when the osmolarity of the growth medium was high; maltose-induced expression was not affected, and malTc-dependent expression was only weakly affected. Mutants lacking MalK, a cytoplasmic membrane protein required for maltose transport, expressed the remaining mal genes at a high level, presumably because an internal inducer of the mal system accumulated; this expression was also strongly repressed at high osmolarity. The repression of mal regulon expression at high osmolarity was not caused by reduced expression of the malT, envZ, or crp gene or by changes in cellular cyclic AMP levels. In strains carrying mutations in genes encoding amylomaltase (malQ), maltodextrin phosphorylase (malP), amylase (malS), or glycogen (glg), malK mutations still led to elevated expression at low osmolarity. The repression at high osmolarity no longer occurred in malQ mutants, however, provided that glycogen was present.  相似文献   

19.
E Boy  F Reinisch  C Richaud  J C Patte 《Biochimie》1976,58(1-2):213-218
A mutant of lysyl-tRNA synthetase has been isolated in Escherichia coli K12. With this strain the Kmapp for lysine is 25 fold higher than with the parental strain. The percentage of charged tRNAlys in vivo is only 7 per cent (as against 65 per cent with HFR H). Under these conditions no derepression of synthesis is observed for three lysine biosynthetic enzymes (AK III, ASA-dehydrogenase, DAP-decarboxylase) ; a partial derepression is obtained in the case of the dhdp-reductase. Thus lysyl-tRNA does not act as the only corepressor molecule in the lysine regulon.  相似文献   

20.
Summary When studying mutants affecting lysyl-tRNA synthetase or tRNALys (hisT, hisW), a lack of correlation is clearly observed between the amount of lysyl-tRNA and the level of derepression of several lysine biosynthetic enzymes. This excludes the possible role of lysyl-tRNA as the specific corepressor of the lysine regulon. However, the level of derepression of DAP-decarboxylase, the last enzyme of the lysine pathway, is very low in the hisT mutant; this indicates that tRNALys is a secondary effector involved in the regulation of the synthesis of this enzyme.Abbreviations DAP diaminopimelate - KRS lysyl-tRNA synthetase - L-lysine tRNA ligase (AMP) (EC6.1.16) - AK III lysinesensitive aspartokinase (EC 2.7.24) - ASA-dehydrogenase aspartic semialdehyde dehydrogenase (EC 1.2.1.10) - DHDP-reductase dihydrodipicolinic acid reductase - DAP-decarboxylase diaminopimelate decarboxylase (EC 4.1.1.20) - AK I threonine-sensitive aspartokinase - HDHI threonine-sensitive homoserine dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号