首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
生长抑制因子(inhibitor of growth,ING)家族成员是候选的抑癌基因.ING蛋白参与磷脂酰肌醇介导的脂类信号转导通路及激素介导的通路,能够与组蛋白乙酰转移酶、去乙酰化酶等结合参与染色质的重构,调节基因的转录,与p53协同作用,抑制细胞生长,诱导细胞凋亡和DNA损伤修复.ING家族成员通过对基因表达的表观遗传学调控将细胞周期、细胞凋亡和衰老等生物学过程有机联系起来.  相似文献   

2.
3.
4.
5.
Different HATS of the ING1 gene family   总被引:21,自引:0,他引:21  
  相似文献   

6.
7.
8.
The inhibitor of growth (ING) family of proteins is an evolutionarily conserved family, with members present from yeast to humans. The mammalian ING proteins are candidate tumor suppressor proteins and accordingly can cooperate with p53 to arrest proliferation and induce apoptosis. ING proteins are also reported to function in the promotion of cellular senescence, the regulation of DNA damage responses and the inhibition of angiogenesis. At the molecular level, ING proteins are thought to function as chromatin regulatory molecules, acting as co-factors for distinct histone and factor acetyl-transferase (H/FAT) and deacetylase (HDAC) enzyme complexes. Further, ING proteins interact with a number of additional proteins involved in the regulation of critical nuclear processes, such as gene expression and DNA replication, and also function as nuclear phosphoinositide (PtdInsP) receptors. Despite the increasing number of known molecular interacting partners for ING proteins, the specific biochemical action of mammalian ING proteins and its relationship to tumor suppression remain elusive. In this Prospect, we summarize the present understanding of the binding partners and physiologic roles of ING proteins and propose a general molecular paradigm for how ING proteins might function to prevent cancer.  相似文献   

9.
10.
11.
The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21WAF1, cyclin B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.  相似文献   

12.
Results and prospects of the yeast three-hybrid system   总被引:13,自引:0,他引:13  
Jaeger S  Eriani G  Martin F 《FEBS letters》2004,570(1-3):7-12
The known members of inhibitor of growth (ING) gene family are considered as candidate tumor suppressor genes. ING4, a novel member of ING family, is recently reported to interact with tumor suppressor p53, p300 (a major component of histone acetyl transferase complexes), and p65(RelA) subunit of NF-κB. In this study, we investigated the cellular behaviors of HepG2 cells with exogenous ING4. Interestingly, the overexpression of ING4 negatively regulated the cell growth with significant G2/M arrest of cell cycle, and moreover, enhanced the cell apoptosis triggered by serum starvation in HepG2 cells. Furthermore, the exogenous ING4 could upregulate endogenous p21 and Bax in HepG2 cells, not in p53-deficient Saos-2 cells, suggesting that G2/M arrest induced by ING4 could be mediated by the increased p21 expression in a p53-dependent manner, although there is no significant increase of p53 expression in HepG2 cells. Moreover, HepG2 cells with exogenous ING4 could significantly increase cell death, as exposed to some DNA-damage agents, such as etoposide and doxorubicin, implying that ING4 could enhance chemosensitivity to certain DNA-damage agents in HepG2 cells.  相似文献   

13.
14.
15.
16.
The tumor suppressor ING1: structure and function.   总被引:25,自引:0,他引:25  
The biological functions of the tumor suppressor ING1 have been studied extensively in the past 5 years since it was cloned. Of the three alternatively spliced forms of ING1, p24(ING1) has been the focus of much of past research. Information on the other currently known isoforms, p47(ING1), p32(ING1), and p27(ING1), has been lacking. ING1 shares many biological functions with p53. It has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, and chemosensitivity. Some of these functions, such as cell-cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. In this review, we will examine what is known about ING1 up to this point and clarify the cloning errors originating from the isolation of this gene.  相似文献   

17.
18.
p33(ING1) enhances UVB-induced apoptosis in melanoma cells   总被引:14,自引:0,他引:14  
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33(ING1) (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33(ING1) mediates UV-induced cell death in melanoma cells. We found that overexpression of p33(ING1) increased while the introduction of an antisense p33(ING1) plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33(ING1) required the presence of p53. Moreover, we found that p33(ING1) enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33(ING1) cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号