首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygenic photosynthesis takes place in the thylakoid membrane of cyanobacteria, algae, and higher plants. Initially light is absorbed by an oligomeric pigment-protein complex designated as photosystem II (PSII), which catalyzes light-induced water cleavage under release of molecular oxygen for the biosphere on our planet. The membrane-extrinsic manganese stabilizing protein (PsbO) is associated on the lumenal side of the thylakoids close to the redox-active (Mn)(4)Ca cluster at the catalytically active site of PSII. Recombinant PsbO from the thermophilic cyanobacterium Thermosynechococcus elongatus was expressed in Escherichia coli and spectroscopically characterized. The secondary structure of recombinant PsbO (recPsbO) was analyzed in the absence and presence of Ca(2+) using Fourier transform infrared spectroscopy (FTIR) and circular dichroism spectropolarimetry (CD). No significant structural changes could be observed when the PSII subunit was titrated with Ca(2+) in vitro. These findings are compared with data for spinach PsbO. Our results are discussed in the light of the recent 3D-structural analysis of the oxygen-evolving PSII and structural/thermodynamic differences between the two homologous proteins from thermophilic cyanobacteria and plants.  相似文献   

2.
In this paper we describe how photosystem II (PSII) from higher plants, which have been depleted, of the extrinsic proteins can be reconstituted with a chimeric fusion protein comprising thioredoxin from Escherichia coli and the manganese stabilising protein from Thermosynechococcus elongatus. Surprisingly, even though E. coli thioredoxin is completely unrelated to PSII, the fusion protein restores higher rates of activity upon rebinding to PSII than either the native spinach MSP, or T. elongatus MSP. PSII reconstituted with the fusion protein also has a lower requirement for calcium than PSII with the small extrinsic proteins removed, or PSII reconstituted with spinach or T. elongatus MSP. The MSP portion of the fusion protein is less thermally stable compared to isolated MSP from T. elongatus, which could be the key to its superior activation capability through greater flexibility. This work reveals the importance of protein–protein interactions in the water splitting activity of PSII and suggests that conformational configurations, which increase flexibility in MSP, are essential to its function, even when these are induced by an unrelated protein.  相似文献   

3.
We cloned and determined the nucleotide sequence of PSII genes, psbB and psbTc, from the thermophilic cyanobacterium, Thermosynechococcus elongatus strain BP-1. PSII-Tc, encoded by psbTc, is a small membrane-spanning subunit of the PSII core complex of cyanobacteria and plants. However, its role has not been fully elucidated. We generated an insertional disruptant of psbTc and studied the role of the PSII-Tc protein in cyanobacterial PSII. The following observations were made: (i) The psbTc disruptant could grow photoautotrophically at a rate similar to that of wild-type T. elongatus under a wide range of light conditions. (ii) Thylakoids and oxygen-evolving PSII complexes were successfully isolated from the psbTc disruptant as well as the wild type. There was no significant difference in the oxygen evolution activities of cells, thylakoids or PSII complexes between the psbTc disruptant and the wild type. This is in contrast to the lower activities in the other PSII mutants of T. elongatus. (iii) Chromatographic separation of monomeric and dimeric PSII revealed that recovery of dimeric PSII was dramatically reduced in the psbTc disruptant. (iv) SDS-urea-PAGE showed a complete loss of the 4.7-kDa band in the mutant PSII. Since this band in wild-type PSII consists of PSII-M and PSII-Tc, we assume that PSII-Tc is critical for the binding of PSII-M in the PSII complex and is involved directly and indirectly in the dimerization of PSII. These results appear to be in good agreement with the recent structural model of the dimeric PSII complex.  相似文献   

4.
Site-directed mutagenesis was performed to investigate whether the two protease-sensitive sequences Phe(156)-Gly(163) and Arg(184)-Ser(191), of the manganese-stabilizing protein (MSP) from a thermophilic cyanobacterium, Synechococcus elongatus (Motoki, A., Shimazu, T., Hirano, M., and Katoh, S. (1998) Biochim. Biophys. Acta 1365, 492-502), are involved in functional interaction with photosystem II (PSII). The ability of MSP to bind to its functional site on the PSII complex and to reactivate oxygen evolution was dramatically reduced by the substitution of Arg(152), Asp(158), Lys(160), or Arg(162) with uncharged residues, by insertion of a single residue between Phe(156) and Leu(157), or by deletion of Leu(157). Substitution of each of the four charged residues with an identically charged residue showed that the charges at Asp(158), and possibly Lys(160), are important for the electrostatic interaction with PSII. The reactivating ability was also strongly affected by the alteration of Phe(156) to Leu. Replacement of Lys(188), the only strictly conserved charged residue in the Arg(184)-Ser(191) sequence, by Gln had only a marginal effect on the function of MSP. High affinity binding of MSP to PSII was also affected significantly by mutation at Arg(152), which is located in a region (Val(148)-Arg(152)) strictly conserved among the 14 sequences so far reported. These results imply that the Val(148)-Gly(163) sequence, which is well conserved among MSPs from cyanobacteria to higher plants, is a domain of MSP for functional interaction with PSII.  相似文献   

5.
Popelkova H  Im MM  Yocum CF 《Biochemistry》2002,41(31):10038-10045
Manganese stabilizing protein (MSP) is an intrinsically disordered extrinsic subunit of photosystem II that regulates the stability and kinetic performance of the tetranuclear manganese cluster that oxidizes water to oxygen. An earlier study showed that deletion of the (1)E-(3)G domain of MSP caused no loss of activity reconstitution, whereas deletion of the (4)K-(10)E domain reduced binding of the protein from 2 to 1 mol of MSP/mol of photosystem II and lowered activity reconstitution to about 50% of the control value [Popelkova et al. (2002) Biochemistry 41, 2702-2711]. In this work we present evidence that deletion of 13 or 14 amino acid residues from the MSP N-terminus (mutants DeltaS13M and DeltaK14M) does not interfere either with functional binding of one copy of MSP to photosystem II or with reconstitution of oxygen evolution activity to 50% of the control level. Both of these mutants exhibit nonspecific binding to photosystem II at higher protein concentrations. Truncation of the MSP sequence by 18 amino acids (mutant DeltaE18M), however, causes a loss of protein binding and activity reconstitution. This result demonstrates that the N-terminal domain (15)T-(18)E is required for binding of at least one copy of MSP to photosystem II. Analyses of CD spectra reveal changes in the structure of DeltaE18M (loss of beta-sheet, gain of unordered structure). Use of the information gained from these experiments in analyses of N-terminal sequences of MSP from a number of species indicates that higher plants and algae possess two recognition domains that are required for MSP binding to PSII, whereas cyanobacteria lack the first N-terminal domain found in eukaryotes. This may explain the absence of a second copy of MSP in the crystal structure of PSII from Synechococcus elongatus [Zouni et al. (2001) Nature 409, 739-743].  相似文献   

6.
PsbZ (Ycf9) is a membrane protein of PSII complexes and is highly conserved from cyanobacteria to plants. We deleted the psbZ gene in the thermophilic cyanobacterium, Thermosynechococcus elongatus. The mutant cells showed photoautotrophic growth indistinguishable from that of the wild type under low and standard light conditions, while they showed even better growth than the wild type under high light. The mutant accumulated less carotenoids and more phycobiliproteins than the wild type under high light, suggestive of tolerance to photoinhibition. The mutant cells evolved oxygen at a rate comparable with the wild type, while the PSII complex isolated from the mutant retained much lower activity than the wild type. N-terminal sequencing revealed that Ycf12 and PsbK proteins were almost lost in the PSII complex. These results indicate that PsbZ is involved in functional integrity of the PSII complex by stabilizing PsbK and Ycf12. We suggest that Ycf12 is an unidentified membrane-spanning polypeptide that is placed near PsbZ and PsbK in the crystal structure of PSII.  相似文献   

7.
This minireview presents a summary of information available on the variety and binding properties of extrinsic proteins that form the oxygen-evolving complex of photosystem II (PSII) of cyanobacteria, red alga, diatom, green alga, euglena, and higher plants. In addition, the structure and function of extrinsic PsbO, PsbV, and PsbU proteins are summarized based on the crystal structure of thermophilic cyanobacterial PSII together with biochemical and genetic studies from various organisms.  相似文献   

8.
PSII-X is a small hydrophobic protein, which is universally present in photosystem II (PSII) core complex among cyanobacteria and plants. The role of PSII-X was studied by directed mutagenesis and biochemical analysis in the thermophilic cyanobacterium Synechococcus elongatus. The psbX-disrupted mutant could grow photoautotrophically indicative of non-essential function, while it showed growth defect under low CO(2) conditions. An active O(2)-evolving PSII complex was successfully isolated from the mutant and wild type. Protein composition of the isolated PSII complex was the same as wild type except for the absence of PSII-X. O(2) evolution supported by artificial quinones was affected in the psbX-disrupted mutant. At high concentration of 2,6-dichlorobenzoquinone or 2,6-dimethylbenzoquinone, the mutant showed much lower activity than wild type, while not much difference was found at low concentration. These results imply that binding or turnover of quinones at the Q(B) site depends, at least in part, on PSII-X protein in the PSII complex. Gel filtration chromatography of the PSII complex revealed that the dimeric structure of the complex was not greatly affected in the psbX-disrupted mutant.  相似文献   

9.
Kawakami K  Iwai M  Ikeuchi M  Kamiya N  Shen JR 《FEBS letters》2007,581(25):4983-4987
PsbY is one of the low molecular mass subunits of oxygen-evolving photosystem II (PSII). Its location, however, has not been identified in the current crystal structure of PSII. We constructed a PsbY-deletion mutant of Thermosynechococcus elongatus, crystallized, and analyzed the crystal structure of the mutant PSII dimer. The results obtained showed that PsbY is located in the periphery of PSII close to the alpha- and beta-subunits of cytochrome b559, which corresponded to an unassigned helix in the 3.7A structure of T. vulcanus or helix X2 in the 3.0A structure of T. elongatus. Our results also indicated that the C-terminal loop of PsbY is protruded toward the stromal side, instead of the lumenal side predicted previously.  相似文献   

10.
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

11.
Photosystem II (PSII), an essential component of oxygenic photosynthesis, is a membrane-bound pigment protein complex found in green plants and cyanobacteria. Whereas the molecular structure of cyanobacterial PSII has been resolved with at least medium resolution [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W. & Orth, P. (2001) Nature (London) 409, 739-743; Kamiya, N. & Shen, J.R. (2003) Proc. Natl Acad. Sci. USA 100, 98-103], the structure of higher plant PSII is only known at low resolution. Therefore Fourier transform infrared (FTIR) difference spectroscopy was used to compare PSII from both Thermosynechococcus elongatus and Synechocystis PCC6803 core complexes with PSII-enriched membranes from spinach (BBY). FTIR difference spectra of T. elongatus core complexes are presented for several different intermediates. As the FTIR difference spectra show close similarities among the three species, the structural arrangement of cofactors in PSII and their interactions with the protein microenvironment during photosynthetic charge separation must be very similar in higher plant PSII and cyanobacterial PSII. A structural model of higher plant PSII can therefore be predicted from the structure of cyanobacterial PSII.  相似文献   

12.
In spinach photosystem II (PSII) membranes, the tetranuclear manganese cluster of the oxygen-evolving complex (OEC) can be reduced by incubation with nitric oxide at -30 degrees C to a state which is characterized by an Mn(2)(II, III) EPR multiline signal [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587]. This state was recently assigned to the S(-)(2) state of the OEC [Schansker, G., Goussias, C., Petrouleas, V., and Rutherford, A. W. (2002) Biochemistry 41, 3057-3064]. On the basis of EPR spectroscopy and flash-induced oxygen evolution patterns, we show that a similar reduction process takes place in PSII samples of the thermophilic cyanobacterium Synechococcus elongatus at both -30 and 0 degrees C. An EPR multiline signal, very similar but not identical to that of the S(-)(2) state in spinach, was obtained with monomeric and dimeric PSII core complexes from S. elongatus only after incubation at -30 degrees C. The assignment of this EPR multiline signal to the S(-)(2) state is corroborated by measurements of flash-induced oxygen evolution patterns and detailed fits using extended Kok models. The small reproducible shifts of several low-field peak positions of the S(-)(2) EPR multiline signal in S. elongatus compared to spinach suggest that slight differences in the coordination geometry and/or the ligands of the manganese cluster exist between thermophilic cyanobacteria and higher plants.  相似文献   

13.
Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the QB site in the D1 subunit and thus block the electron transfer from QA to QB. Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the QB site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of QA, which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334–342). This discovery is discussed in the context of proton transfer to the lumen.  相似文献   

14.
Electron microscopy and single-particle analyses have been carried out on negatively stained photosystem II (PSII) complexes isolated from the green alga Chlamydomonas reinhardtii and the thermophilic cyanobacterium Synechococcus elongatus. The analyses have yielded three-dimensional structures at 30-A resolution. Biochemical analysis of the C. reinhardtii particle suggested it to be very similar to the light-harvesting complex II (LHCII).PSII supercomplex of spinach, a conclusion borne out by its three-dimensional structure. Not only was the C. reinhardtii LHCII.PSII supercomplex dimeric and of comparable size and shape to that of spinach, but the structural features for the extrinsic OEC subunits bound to the lumenal surface were also similar thus allowing identification of the PsbO, PsbP, and PsbQ OEC proteins. The particle isolated from S. elongatus was also dimeric and retained its OEC proteins, PsbO, PsbU, and PsbV (cytochrome c(550)), which were again visualized as protrusions on the lumenal surface of the complex. The overall size and shape of the cyanobacterial particle was similar to that of a PSII dimeric core complex isolated from spinach for which higher resolution structural data are known from electron crystallography. By building the higher resolution structural model into the projection maps it has been possible to relate the positioning of the OEC proteins of C. reinhardtii and S. elongatus with the underlying transmembrane helices of other major intrinsic subunits of the core complex, D1, D2, CP47, and CP43 proteins. It is concluded that the PsbO protein is located over the CP47 and D2 side of the reaction center core complex, whereas the PsbP/PsbQ and PsbV/PsbU are positioned over the lumenal surface of the N-terminal region of the D1 protein. However, the mass attributed to PsbV/PsbU seems to bridge across to the PsbO, whereas the PsbP/PsbQ proteins protrude out more from the lumenal surface. Nevertheless, within the resolution and quality of the data, the relative positions of the center of masses for OEC proteins of C. reinhardtii and S. elongatus are similar and consistent with those determined previously for the OEC proteins of spinach.  相似文献   

15.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

16.
The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

17.
Redox properties of cytochrome b559 (Cyt b559) and cytochrome c550 (Cyt c550) have been studied by using highly stable photosystem II (PSII) core complex preparations from a mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus with a histidine tag on the CP43 protein of PSII. Two different redox potential forms for Cyt b559 are found in these preparations, with a midpoint redox potential ( E'(m)) of +390 mV in about half of the centers and +275 mV in the other half. The high-potential form, whose E'(m)is pH independent, can be converted into the lower potential form by Tris washing, mild heating or alkaline pH incubation. The E'(m) of the low-potential form is significantly higher than that found in other photosynthetic organisms and is not affected by pH. The possibility that the heme of Cyt b559 in T. elongatus is in a more hydrophobic environment is discussed. Cyt c550 has a higher E'(m)when bound to the PSII core (-80 mV at pH 6.0) than after its extraction from the complex (-240 mV at pH 6.0). The E'(m) of Cyt c550 bound to PSII is pH independent, while in the purified state an increase of about 58 mV/pH unit is observed when the pH decreases below pH 9.0. Thus, Cyt c550 seems to have a single protonateable group which influences the redox properties of the heme. From these electrochemical measurements and from EPR controls it is proposed that important changes in the solvent accessibility to the heme and in the acid-base properties of that protonateable group could occur upon the release of Cyt c550 from PSII.  相似文献   

18.
In the cyanobacterium Thermosynechococcus elongatus BP-1, living in hot springs, the light environment directly regulates expression of genes that encode key components of the photosynthetic multi-subunit protein-pigment complex photosystem II (PSII). Light is not only essential as an energy source to power photosynthesis, but leads to formation of aggressive radicals which induce severe damage of protein subunits and organic cofactors. Photosynthetic organisms develop several protection mechanisms against this photo-damage, such as the differential expression of genes coding for the reaction center subunit D1 in PSlI. Testing the expression of the three different genes (psbAI, psbAII, psbAIII) coding for D1 in T. elongatus under culture conditions used for preparing the material used in crystallization of PSII showed that under these conditions only subunit PsbA1 is present. However, exposure to high-light intensity induced partial replacement of PsbA1 with PsbA3. Modeling of the variant amino acids of the three different D1 copies in the 3.0 A resolution crystal structure of PSII revealed that most of them are in the direct vicinity to redox-active cofactors of the electron transfer chain. Possible structural and mechanistic consequences for electron transfer are discussed.  相似文献   

19.
The biogenesis and oxygen-evolving activity of cyanobacterial Photosystem II (PSII) is dependent on a number of accessory proteins not found in the crystallised dimeric complex. These include Psb27, a small lipoprotein attached to the lumenal side of PSII, which has been assigned a role in regulating the assembly of the Mn(4)Ca cluster catalysing water oxidation. To gain a better understanding of Psb27, we have determined in this study the crystal structure of the soluble domain of Psb27 from Thermosynechococcus elongatus to a resolution of 1.6??. The structure is a four-helix bundle, similar to the recently published solution structures of Psb27 from Synechocystis PCC 6803 obtained by nuclear magnetic resonance (NMR) spectroscopy. Importantly, the crystal structure presented here helps us resolve the differences between the NMR-derived structural models. Potential binding sites for Psb27 within PSII are discussed in light of recent biochemical data in the literature.  相似文献   

20.
Photosystem II (PSII) is the plant photosynthetic reaction center that carries out the light driven oxidation of water. The water splitting reactions are catalyzed at a tetranuclear manganese cluster. The manganese stabilizing protein (MSP) of PSII stabilizes the manganese cluster and accelerates the rate of oxygen evolution. MSP can be removed from PSII, with an accompanying decrease in activity. Either an Escherichia coli expressed version of MSP or native, plant MSP can be rebound to the PSII reaction center; MSP reconstitution reverses the deleterious effects associated with MSP removal. We have employed Fourier transform infrared (FTIR) spectroscopy and solution small angle x-ray scattering (SAXS) techniques to investigate the structure of MSP in solution and to define the structural changes that occur before and after reconstitution to PSII. FTIR and SAXS are complementary, because FTIR spectroscopy detects changes in MSP secondary structure and SAXS detects changes in MSP size/shape. From the SAXS data, we conclude that the size/shape and domain structure of MSP do not change when MSP binds to PSII. From FTIR data acquired before and after reconstitution, we conclude that the reconstitution-induced increase in beta-sheet content, which was previously reported, persists after MSP is removed from the PSII reaction center. However, the secondary structural change in MSP is metastable after removal from PSII, which indicates that this form of MSP is not the lowest energy conformation in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号