首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A photosynthetic organism is subjected to photo-oxidative stress when more light energy is absorbed than is used in photosynthesis. In the light, highly reactive singlet oxygen can be produced via triplet chlorophyll formation in the reaction centre of photosystem II and in the antenna system. In the antenna, triplet chlorophyll is produced directly by excited singlet chlorophyll, while in the reaction centre it is formed via charge recombination of the light-induced charge pair. Changes of the mid-point potential of the primary quinone acceptor in photosystem II modulate the pathway of charge recombination in photosystem II and influence the yield of singlet oxygen production. Singlet oxygen can be quenched by beta-carotene, alpha-tocopherol or can react with the D1 protein of photosystem II as target. If not completely quenched, it can specifically trigger the up-regulation of the expression of genes which are involved in the molecular defence response of plants against photo-oxidative stress.  相似文献   

2.
Photoprotection of photosystem II (PSII) is essential to avoid the light-induced damage of the photosynthetic apparatus due to the formation of reactive oxygen species (=photo-oxidative stress) under excess light. Carotenoids are known to play a crucial role in these processes based on their property to deactivate triplet chlorophyll (3Chl*) and singlet oxygen (1O?*). Xanthophylls are further assumed to be involved either directly or indirectly in the non-photochemical quenching (NPQ) of excess light energy in the antenna of PSII. This review gives an overview on recent progress in the understanding of the photoprotective role of the xanthophylls zeaxanthin (which is formed in the light in the so-called xanthophyll cycle) and lutein with emphasis on the NPQ processes associated with PSII of higher plants. The current knowledge supports the view that the photoprotective role of Lut is predominantly restricted to its function in the deactivation of 3Chl*, while zeaxanthin is the major player in the deactivation of excited singlet Chl (1Chl*) and thus in NPQ (non-photochemical quenching). Additionally, zeaxanthin serves important functions as an antioxidant in the lipid phase of the membrane and is likely to act as a key component in the memory of the chloroplast with respect to preceding photo-oxidative stress. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

3.
Infrared absorption and electron spin resonance studies have shown that the excited triplet state of chlorophyll formed by radical pair recombination in the PSII reaction center is mainly localized on the accessory chlorophyll, which is most probably located in the D1 protein (Chl(1)). This triplet localization plays two contrasting roles, depending on the redox state of Q(A), in the process of acceptor-side photoinhibition of PSII. In the early stage of photoinhibition, in which singly reduced Q(A) is reversibly stabilized, the triplet state of Chl(1) ((3)Chl(1)*) is rapidly quenched (t(1/2) = 2-20 micro s) by the interaction with Q(A)(-), preventing formation of harmful singlet oxygen. In the next inhibitory stage, in which Q(A) is doubly reduced and then irreversibly released from the Q(A) pocket, the lifetime of (3)Chl(1)* becomes longer by more than two orders of magnitude (t(1/2) = 1-3 ms). As a result, singlet oxygen is produced around Chl(1) in the D1 protein, causing damage preferably to the D1 protein, which induces subsequent proteolytic degradation. Thus, (3)Chl(1)* functions as a switch to change from the protective to the degradative phase of the PSII reaction center by sensing either reversible or irreversible inhibited state at the Q(A) site.  相似文献   

4.
I Vass  S Styring 《Biochemistry》1992,31(26):5957-5963
Fluorescence and electron paramagnetic resonance (EPR) measurements have been applied to characterize chlorophyll triplet formation in the reaction center of photosystem II (PSII). A highly triplet forming state was generated in PSII membranes by chemical double reduction of the primary electron acceptor QA. In triplet forming PSII centers, the steady-state yield of chlorophyll fluorescence decreased to about 70% of the maximal fluorescence yield observed in closed PSII centers in which QA is singly reduced. The results are well interpreted in the framework of a model where the charge state of QA electrostatically controls the yield of primary charge separation [Schatz, G. H., Brock, H., & Holzwarth, A. R. (1988) Biophys. J. 54, 397-405]. Thus, high triplet yield and decreased, although still quite high, fluorescence indicate a charge-neutralized state of PSII in which QA is singly or doubly reduced and protonated or absent. The EPR signal of the triplet primary chlorophyll donor, 3P680, is suppressed by illumination at 77 K concomitant with the formation of a cationic radical (g = 2.0025-2.0027, and 0.92 mT wide) that is stable in the dark. This is attributed to the oxidation of an accessory chlorophyll (Chl) in the vicinity of P680. Electrostatic repulsion between Chl+ and P680+ is likely to prevent primary charge separation, and in turn triplet formation, providing a further example of electrostatic control of primary charge separation. The triplet P680 EPR signal is also suppressed in the presence of oxygen. This effect, which is almost completely reversible by removing the oxygen, is attributed to the interaction of triplet P680 with triplet O2.  相似文献   

5.
Recombination of the primary radical pair of photosystem II (PSII) of photosynthesis may produce the triplet state of the primary donor of PSII. Triplet formation is potentially harmful because chlorophyll triplets can react with molecular oxygen to produce the reactive singlet oxygen (1O?). The yield of 1O? is expected to be directly proportional to the triplet yield and the triplet yield of charge recombination can be lowered with a magnetic field of 100-300 mT. In this study, we illuminated intact pumpkin leaves with strong light in the presence and absence of a magnetic field and found that the magnetic field protects against photoinhibition of PSII. The result suggests that radical pair recombination is responsible for significant part of 1O? production in the chloroplast. The magnetic field effect vanished if leaves were illuminated in the presence of lincomycin, an inhibitor of chloroplast protein synthesis, or if isolated thylakoid membranes were exposed to light. These data, in turn, indicate that 1O? produced by the recombination of the primary charge pair is not directly involved in photoinactivation of PSII but instead damages PSII by inhibiting the repair of photoinhibited PSII. We also found that an Arabidopsis thaliana mutant lacking α-tocopherol, a scavenger of 1O?, is more sensitive to photoinhibition than the wild-type in the absence but not in the presence of lincomycin, confirming that the target of 1O? is the repair mechanism.  相似文献   

6.
Light-induced damage of the photosynthetic apparatus is an important and complex phenomenon, which affects primarily the photosystem II (PSII) complex. Here, the author summarizes the current state of understanding, which concerns the role of charge recombination reactions in photodamage and photoprotection. The main mechanism of photodamage induced by visible light appears to be mediated by acceptor side modifications, which develop under light intensity conditions when the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation facilitates triplet chlorophyll formation and singlet oxygen production in the reaction center of PSII, which initiates the damage of electron transport components and protein structure. This mechanism is an important, but not exclusive, pathway of photodamage, and light-induced inactivation of the Mn cluster of water oxidation may occur in parallel with the singlet oxygen-dependent pathway.  相似文献   

7.
《BBA》2023,1864(4):149002
In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15° about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.  相似文献   

8.
The relationship between photosynthetic energy conservation and thermal dissipation of light energy is considered, with emphasis on organisms which tolerate full desiccation without suffering photo-oxidative damage in strong light. As soon as water becomes available to dry poikilohydric organisms, they resume photosynthetic water oxidation. Only excess light is then thermally dissipated in mosses and chlorolichens by a mechanism depending on the protonation of a thylakoid protein and availability of zeaxanthin. Upon desiccation, another mechanism is activated which requires neither protonation nor zeaxanthin although the zeaxanthin-dependent mechanism of energy dissipation remains active, provided desiccation occurs in the light. Increased thermal energy dissipation under desiccation finds expression in the loss of variable, and in the quenching of, basal chlorophyll fluorescence. Spectroscopical analysis revealed the activity of photosystem II reaction centres in the absence of water. Oxidized beta-carotene (Car+) and reduced chlorophyll (Chl-), perhaps ChlD1 next to P680 within the D1 subunit, accumulates reversibly under very strong illumination. Although recombination between Car+ and Chl- is too slow to contribute significantly to thermal energy dissipation, a much faster reaction such as the recombination between P680+ and the neighbouring Chl- is suggested to form the molecular basis of desiccation-induced energy dissipation in photosystem II reaction centres. Thermal dissipation of absorbed light energy within a picosecond time domain deactivates excited singlet chlorophyll, thereby preventing triplet accumulation and the consequent photo-oxidative damage by singlet oxygen.  相似文献   

9.
Some herbicides act by binding to the exchangeable quinone site in the photosystem II (PSII) reaction centre, thus blocking electron transfer. In this article, it is hypothesized that the plant is killed by light-induced oxidative stress initiated by damage caused by formation of singlet oxygen in the reaction centre itself. This occurs when light-induced charge pairs in herbicide-inhibited PSII decay by a charge recombination route involving the formation of a chlorophyll triplet state that is able to activate oxygen. The binding of phenolic herbicides favours this pathway, thus increasing the efficiency of photodamage in this class of herbicides.  相似文献   

10.
M Polm  K Brettel 《Biophysical journal》1998,74(6):3173-3181
Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.  相似文献   

11.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   

12.
Laser-flash-induced transient absorption measurements were performed on trimeric light-harvesting complex II to study carotenoid (Car) and chlorophyll (Chl) triplet states as a function of temperature. In these complexes efficient transfer of triplets from Chl to Car occurs as a protection mechanism against singlet oxygen formation. It appears that at room temperature all triplets are being transferred from Chl to Car; at lower temperatures (77 K and below) the transfer is less efficient and chlorophyll triplets can be observed. In the presence of oxygen at room temperature the Car triplets are partly quenched by oxygen and two different Car triplet spectral species can be distinguished because of a difference in quenching rate. One of these spectral species is replaced by another one upon cooling to 4 Ki demonstrating that at least three carotenoids are in close contact with chlorophylls. The triplet minus singlet absorption (T-S) spectra show maxima at 504-506 nm and 517-523 nm, respectively. In the Chl Qy region absorption changes can be observed that are caused by Car triplets. The T-S spectra in the Chl region show an interesting temperature dependence which indicates that various Car's are in contact with different Chl a molecules. The results are discussed in terms of the crystal structure of light-harvesting complex II.  相似文献   

13.
In photosynthetic bacteria, in which the iron-ubiquinone complex X is prereduced, a magnetic field induces an increase of the emmission yield, which is correlated with the decrease in reaction center triplet yield reported previously (Hoff, A.J., Rademaker, H., van Grondelle, R. and Duysens, L.N.M. (1977) Biochim. Biophys. Acta 460, 547--554). Our results support the hypothesis that under these conditions charge recombination of the oxidized primary donor and the reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll. In Chlorella vulgaris and spinach chloroplasts, at 120 K, the magnetic field has an effect similar to that found in bacteria, which suggests that an intermediary electron acceptor between P-680 and Q is present in Photosystem II also.  相似文献   

14.
Singlet oxygen and photo-oxidative stress management in plants and algae   总被引:9,自引:0,他引:9  
Photosynthetic organisms constantly face the threat of photo-oxidative stress from fluctuating light conditions and environmental stress. Plants and algae have developed an array of defences to protect the chloroplast from reactive oxygen species. Genetic and physiological studies have shown that antioxidant responses are important to high-light acclimation, both by directly scavenging or quenching reactive oxygen intermediates and by contributing reducing power for alternative electron transport pathways and excess energy dissipation. At present, the signalling events leading to up-regulation of antioxidant defences in high light remain a mystery. Recent advances toward understanding acclimation to oxidative stress in both photosynthetic and non-photosynthetic model organisms may illuminate how plants and algae respond to high-light stress. Although the role of hydrogen peroxide in high-light acclimation has been investigated, less is known about responses to singlet oxygen, a form of reactive oxygen that poses a significant threat specifically to photosynthetic organisms. This review will discuss some intriguing new findings in that area, focusing on recent findings regarding the nature of singlet-oxygen responses in the chloroplast.  相似文献   

15.
We briefly review the main mechanisms proposed for photodamage to photosystem II (PSII), at the donor and acceptor sides, and then discuss the mechanism whereby filamentous cyanobacteria inhabiting biological sand crusts such as Microcoleus sp. are able to avoid serious damage to their photosynthetic machinery. We show that the decline in fluorescence following exposure to excess light does not reflect a reduction in PSII activity but rather the activation of a non-radiative charge recombination in PSII. Furthermore, we show that the difference in the thermoluminescent peak temperature intensities in these organisms, in the presence and absence of inhibitors such as dichlorophenyl-dimethylurea (DCMU), is smaller than observed in model organisms suggesting that the redox gap between Q(A)? and P???+ is smaller. On the basis of these data, we propose that this could enable an alternative, pheophytin-independent recombination, thereby minimizing the damaging 1O? production associated with radiative recombination.  相似文献   

16.
Six different xanthophyll cycles have been described in photosynthetic organisms. All of them protect the photosynthetic apparatus from photodamage caused by light-induced oxidative stress. Overexcitation conditions lead, in the chloroplast, to the over-reduction of the NADP pool and production of superoxide, which can subsequently be metabolized to hydrogen peroxide or a hydroxyl radical, other reactive oxygen species (ROS). On the other hand, overexcitation of photosystems leads to an increased lifetime of the chlorophyll excited state, increasing the probability of chlorophyll triplet formation which reacts with triplet oxygen forming single oxygen, another ROS. The products of the light-dependent phase of xanthophyll cycles play an important role in the protection against oxidative stress generated not only by an excess of light but also by other ROS-generating factors such as drought, chilling, heat, senescence, or salinity stress. Four, mainly hypothetical, mechanisms explaining the protective role of xanthophyll cycles in oxidative stress are presented. One of them is the direct quenching of overexcitation by products of the light phase of xanthophyll cycles and three others are based on the indirect participation of xanthophyll cycle carotenoids in the process of photoprotection. They include: (1) indirect quenching of overexcitation by aggregation-dependent light-harvesting complexes (LHCII) quenching; (2) light-driven mechanisms in LHCII; and (3) a model based on charge transfer quenching between Chl a and Zx. Moreover, results of the studies on the antioxidant properties of xanthophyll cycle pigments in model systems are also presented.  相似文献   

17.
H. Rademaker  A.J. Hoff  L.N.M. Duysens 《BBA》1979,546(2):248-255
In photosynthetic bacteria, in which the iron-ubiquinone complex X is prereduced, a magnetic field induces an increase of the emission yield, which is correlated with the decrease in reaction center triplet yield reported previously (Hoff, A.J., Rademaker, H., van Grondelle, R. and Duysens, L.N.M. (1977) Biochim. Biophys. Acta 460, 547–554). Our results support the hypothesis that under these conditions charge recombination of the oxidized primary donor and the reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll.In Chlorella vulgaris and spinach chloroplasts, at 120 K, the magnetic field has an effect similar to that found in bacteria, which suggests that an intermediary electron acceptor between P-680 and Q is present in Photosystem II also.  相似文献   

18.
The effects of the positive charges of amines such as spermine (SPM), putrescine (PUT) and methylamine (MET) on the protection of PSII against excessive illumination were investigated in isolated thylakoid membranes. Under photoinhibition conditions, water oxidation, the kinetics of the Chl fluorescence rise and charge recombination in PSII were affected. A low concentration of SPM (1 mM) added before photoinhibition produced a significant improvement of F(v)/F(0), the oxygen yield and the amplitude of the B-band of thermoluminescence compared with the other amines. Amongst the amines studied, only SPM could protect the photosynthetic apparatus under photoinhibition conditions. This protection was probably provided by the polycationic nature of SPM (four positive charges at physiological pH), which can stabilize surface-exposed proteins of PSII through electrostatic interaction.  相似文献   

19.
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation.  相似文献   

20.
Its superior quantum efficiency renders PSII a model for biomimetic systems. However, also in biological water oxidation by PSII, the efficiency is restricted by recombination losses. By laser-flash illumination, the secondary radical pair, P680(+)Q(-) (A) (where P680 is the primary Chl donor in PSII and Q(A), primary quinone acceptor of PSII), was formed in close to 100% of the PSII. Investigation of the quantum efficiency (or yield) of the subsequent steps by time-resolved delayed (10 micros to 60 ms) and prompt (70 micros to 700 ms) Chl fluorescence measurements on PSII membrane particles suggests that (1) the effective rate for P680(+) Q(-) (A) recombination is approximately 5 ms(-1) with an activation energy of approximately 0.34 eV, circumstantially confirming dominating losses by reformation of the primary radical pair followed by ground-state recombination. (2) Because of compensatory influences on recombination and forward reactions, the efficiency is only weakly temperature dependent. (3) Recombination losses are several-fold enhanced at lower pH. (4) Calculation based on delayed-fluorescence data suggests that the losses depend on the state of the water-oxidizing manganese complex, being low in the S(0)-->S(1) and S(1)-->S(2) transition, clearly higher in S(2)-->S(3) and S(3)-->S(4)-->S(0). (5) For the used artificial electron acceptor, the efficiency is limited by acceptor-side processes/S-state decay at high/low photon-absorption rates resulting in optimal efficiency at surprisingly low rates of approximately 0.15-15 photons s(-1) (per PSII). The pH and S-state dependence can be rationalized by the basic model of alternate electron-proton removal proposed elsewhere. A physiological function of the recombination losses could be limitation of the lifetime of the reactive donor-side tyrosine radical (Y(.) (Z)) in the case of low-pH blockage of water oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号