首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fundamental to our understanding of the ecology of animal communities in the tropics is knowledge of the effect of seasonal changes in the abundance of food sources in consumer diets. We determined stable‐isotope composition (13C/12C and 15N/14N) in whole blood of 14 resident avian species in a tropical dry forest to quantify the origin of their assimilated protein. We used a probabilistic approach (IsoSource) to estimate the relative contribution of C3 plants, CAM‐C4 plants, C3 insects, and CAM‐C4 insects during the dry and rainy seasons. IsoSource iteratively creates each possible combination of source contribution and produces a distribution of all feasible combinations that adequately predict the observed isotopic signature of the consumer. Granivore–frugivores and granivore–frugivore–insectivores were modeled as predominantly dependent upon plants whereas insectivorous birds were modeled to derive protein almost exclusively from insects. Between these extremes there were several species using mixed diets such as insectivore–frugivores or insectivore–granivores. In most species, virtually all assimilated food was of C3 origin with the exception of Ruddy Ground‐Doves (Columbina talpacoti) in which CAM or C4 plants contributed significantly. Seasonal changes in relative food source contribution were followed in eight species of birds. Of these species, White‐tipped Doves (Leptotila verreauxi), Grayish Saltators (Saltator coerulescens), and Social Flycatchers (Myiozetetes similis) increased their use of insects in the rainy season, in contrast to Great Kiskadees (Pitangus sulphuratus), which decreased their use of insects. Our study suggests that that diverse strategies are used by various avian species to obtain dietary proteins within seasonal habitats.  相似文献   

2.
Fruits comprise a large protion of the diet in many bird species. Several species switch diet composition seasonally, from a diet consisting almost entirely of invertebrates to one that comprises even exclusively fruits, and vice versa. The adaptive significance of these dietary shifts has rarely been investigated. The present article reviews some recent data revealing much evidence that seasonal frugivory is highly adaptive, and that fruits may be an adequate food to satisfy the birds' daily nutritional demands. There is further evidence that fruits may provide particular nutritional qualities to meet particular demands. Secondary plant metabolites considered to act as feeding deterrents seem to be less detrimental to avian frugivores than observed in many herbivores. The birds appear to be able to counteract the detrimental effects of secondary compounds taken with their fruit diets. In addition, there is evidence that secondary plant compounds may even stimulate food intake and metabolism in avian frugivores, although the mechanisms of counteradaptation need to be clarified.  相似文献   

3.
The nutrients animals ingest are allocated to serve different functions. We used contrasting C stable isotope signatures of dominant vegetation types in a North American subtropical desert to decipher how avian consumers allocate nutrients to fuel oxidative metabolism and to construct tissues. We conducted C stable isotope analysis of breath and feathers collected from nectarivores (hummingbirds) and of breath, plasma, and red blood cell samples collected from frugivores, granivores, and insectivores. Based on varying nutrient characteristics of food sources, we expected that for frugivores and granivores, CAM‐derived food (RCCAM) would have similar importance for oxidative metabolism and for tissue building, that RCCAM in nectarivores and insectivores would be more important for fueling metabolism than for generating tissues, and that (although low) RCCAM in insectivores would be higher for sustaining metabolism than for building tissues. Our predictions held true for nectarivores and granivores, but RCCAM use in tissue building was lower than expected in frugivores and higher than expected in insectivores. Our examination at the trophic guild, population, and individual levels showed that in general, nutrients used to sustain oxidative metabolism and tissue construction had a uniform isotopic origin. This finding suggests that the avian community under investigation does not route different food groups to fulfill different needs. However, we found some exceptions, indicating that birds can use different food sources for different functions, irrespective of trophic guild.  相似文献   

4.
Many highly invasive plants are fleshy‐fruited and owe their invasiveness largely to mutualisms formed with local dispersers. The energetic benefits gained by frugivores from ingestion of fruits of invasive alien plants remain poorly documented. We assess whether avian frugivores process fruits of invasive alien plants effectively to meet their daily energetic requirements. Four fleshy‐fruited plant species that are invasive in southern Africa were considered –Solanum mauritianum, Cinnamomum camphora, Lantana camara and Psidium guajava. Their fruits were fed to three common generalist frugivores – Red‐winged Starling Onychognathus morio, Speckled Mousebird Colius striatus and Dark‐capped Bulbul Pycnonotus tricolor– to determine the efficiency of digestion. Energetic parameters calculated for all fruit diets varied significantly between frugivore species. Speckled Mousebirds and Dark‐capped Bulbuls maintained body mass and efficiently processed all four fruit types, whereas Red‐winged Starlings only did so on C. camphora and S. mauritianum diets. These results explain why these fruits are attractive to local avian frugivores. Furthermore, these avian frugivores processed large quantities of invasive fruits, thereby serving as potentially efficient dispersers.  相似文献   

5.
The causes of variation in animal species richness at large spatial scales are intensively debated. Here, we examine whether the diversity of food plants, contemporary climate and energy, or habitat heterogeneity determine species richness patterns of avian frugivores across sub-Saharan Africa. Path models indicate that species richness of Ficus (their fruits being one of the major food resources for frugivores in the tropics) has the strongest direct effect on richness of avian frugivores, whereas the influences of variables related to water-energy and habitat heterogeneity are mainly indirect. The importance of Ficus richness for richness of avian frugivores diminishes with decreasing specialization of birds on fruit eating, but is retained when accounting for spatial autocorrelation. We suggest that a positive relationship between food plant and frugivore species richness could result from niche assembly mechanisms (e.g. coevolutionary adaptations to fruit size, fruit colour or vertical stratification of fruit presentation) or, alternatively, from stochastic speciation-extinction processes. In any case, the close relationship between species richness of Ficus and avian frugivores suggests that figs are keystone resources for animal consumers, even at continental scales.  相似文献   

6.
Dietary variability among primates is examined based on a review of 46 long-term studies of wild populations. Results suggest that primates do not consistently combine the same kinds of foods in their diets, as many past categorizations would suggest, but rather, that they often switch between diet categories (e.g., fruit, insects, etc.). Dietary variability, as quantified in our review, did not appear to be constrained by phylogeny or to differ between species placed in different diet categories (e.g., frugivores, insectivores, etc.). In addition, dietary variability was not related to body size, habitat productivity, seasonality, population density, or the number of sympatric primate species.  相似文献   

7.
The origins of interactions between angiosperms and fruit‐eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm–frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm–frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm–frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm–frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene–Oligocene boundary (around 34 Mya) resulted in more semi‐open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a ‘flying frugivore niche’ exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80 million years of angiosperm–frugivore evolution.  相似文献   

8.
Kevin C. Burns  Babs Lake 《Oikos》2009,118(12):1901-1907
The size of fleshy fruits spans several orders of magnitude. However, the evolution of fruit size diversity is poorly understood. Fruit size diversity is hypothesised to result from several potential processes. The frugivore hypothesis postulates that different‐sized animal fruit consumers select for different‐sized fruits. The correlated selection hypothesis postulates that fruit size is allometrically related to other plant traits (e.g. leaf size, plant height); therefore differences in fruit size result from correlated evolution with other plant traits. We tested the frugivore and correlated selection hypotheses as potential explanations for fruit size diversity in two New Zealand study sites. We observed birds foraging for fruits over two fruiting seasons at each site and measured fruit size, leaf size and plant height in a total of 32 plant species. Relationships between average fruit size, leaf size, plant size and the average size of birds consuming each fruit species were then evaluated using phylogenetically independent contrasts. Similar results were obtained in both study sites. Fruit size was correlated with the size of avian fruit consumers, but was unrelated to leaf size or plant height. Therefore, results falsified the correlated selection hypothesis but failed to falsify the frugivore hypothesis. Although results suggest that frugivores may have influenced the evolution of fruit size in New Zealand, further study is needed to generate a mechanistic understanding of how frugivores may have selected for interspecific variation in fruit size.  相似文献   

9.
Traveset  A. 《Plant Ecology》1993,107(1):191-203
Vertebrate frugivores often feed on fruits upon or within which insects also feed, yet little information exists on the potential magnitude of interactions between these consumers. The Mediterranean shrub Pistacia terebinthus, the birds that consume its fruits, and the wasps that feed upon its seeds are examined in this study. P. terebinthus produces a highly variable fraction of final-sized red fruits that never become mature (green-colored). Red fruits can be immature, parthenocarpic, aborted, or attacked by wasps, and their pulp is much less nutritious than that of mature fruits. A total of 20 bird species consumed the fruits in the study area. Legitimate dispersers accounted for 39% of the total fruit removal, while pulp eaters and seed predators accounted for the remainder. Birds strongly preferred the mature fruits (only 4% of the fruits consumed were red). The incidence of wasps in the seeds ranged from 0 to 42% of the crop in 1989 and from 0 to 24% in 1990. The influence of avian and insect frugivore guilds on each other appears to be quite low because of the narrow overlap in resource utilization by birds and wasps, and an overall low intensity of wasp seed predation. From an evolutionary perspective, the possible ability of wasps to preclude fruit maturation appears not to be attributable to the present interaction with avian frugivores.  相似文献   

10.
Aim To examine patterns of avian frugivory across clades, geography and environments. Location Global, including all six major biogeographical realms (Afrotropics, Australasia, Indo‐Malaya, Nearctic, Neotropics and Palaearctic). Methods First, we examine the taxonomic distribution of avian frugivory within orders and families. Second we evaluate, with traditional and spatial regression approaches, the geographical patterns of frugivore species richness and proportion. Third, we test the potential of contemporary climate (water–energy, productivity, seasonality), habitat heterogeneity (topography, habitat diversity) and biogeographical history (captured by realm membership) to explain geographical patterns of avian frugivory. Results Most frugivorous birds (50%) are found within the perching birds (Passeriformes), but the woodpeckers and allies (Piciformes), parrots (Psittaciformes) and pigeons (Columbiformes) also contain a significant number of frugivorous species (9–15%). Frugivore richness is highest in the Neotropics, but peaks in overall bird diversity in the Himalayan foothills, the East African mountains and in some areas of Brazil and Bolivia are not reflected by frugivores. Current climate explains more variance in species richness and proportion of frugivores than of non‐frugivores whereas it is the opposite for habitat heterogeneity. Actual evapotranspiration (AET) emerges as the best single climatic predictor variable of avian frugivory. Significant differences in frugivore richness and proportion between select biogeographical regions remain after differences in environment (i.e. AET) are accounted for. Main conclusions We present evidence that both environmental and historical constraints influence global patterns of avian frugivory. Whereas water–energy dynamics possibly constrain frugivore distribution via indirect effects on food plants, regional differences in avian frugivory most likely reflect historical contingencies related to the evolutionary history of fleshy fruited plant taxa, niche conservatism and past climate change. Overall our results support an important role of co‐diversification and environmental constraints on regional assembly over macroevolutionary time‐scales.  相似文献   

11.
Fleshy-fruited plants depend fundamentally on interactions with frugivores for effective seed dispersal. Recent models of frugivory within spatially explicit networks make two general predictions regarding these interactions: rate of fruit removal increases (i.e., is facilitated) as densities of conspecific neighborhood fruits increase, and fruit removal rate varies positively with frugivore abundance. We conducted a field experiment that constitutes the first empirical and simultaneous test of these two primary predictions. We manipulated neighborhood abundances of arrowwood (Viburnum recognitum and Viburnum dentatum) fruits in southern New England’s maritime shrub community and monitored removal rates by autumn-migrating birds. Focal arrowwood plants in neighborhoods with high conspecific fruit density sustained moderately decreased fruit removal rates (i.e., competition) relative to those in low-density neighborhoods, a result that agrees with most field research to date but contrasts with theoretical expectation. We suggest the spatial contexts that favor competition (i.e., high-abundance neighborhoods and highly aggregated landscapes) are considerably more common than the relatively uniform, low-aggregation fruiting landscapes that promote facilitation. Patterns of arrowwood removal by avian frugivores generally varied positively with, and apparently in response to, seasonal changes in migratory frugivore abundance. However, we suggest that dense stands of arrowwood concentrated frugivore activity at the neighborhood scale, thus counteracting geographic patterns of frugivore abundance. Our results underscore the importance of considering spatial context (e.g., fruit distribution and aggregation, frugivory hubs) in plant-avian frugivore interactions.  相似文献   

12.
K. C. Burns 《Oikos》2006,115(3):427-432
Studies of seed dispersal mutualisms typically test for adaptive relationships between fruits and frugivores. Here, I take the opposite approach, and ask what relationships would be expected based on chance encounters between mutualists. I derived a simple null model to predict pair-wise relationships between fruit and frugivore species. I assumed that all frugivores had identical fruit preferences, but allowed for interspecific variation in plant abundances, frugivore abundances and fruit phenologies. Under these conditions, the number of visits each frugivore species makes to each plant species results from the product of plant abundances and frugivore abundances when each plant species produces fruit. I then tested null model predictions with observations in a temperate rainforest in British Columbia, Canada. I measured the abundance and phenology of seven bird-dispersed plant species, seasonal changes in the abundances of six avian frugivore species and 212 interactions between them. Empirical results were generally consistent with predictions, suggesting that relationships between birds and fruits are structured randomly. However, some variation in relationships between observations and predictions was observed, suggesting deterministic processes may also be important. Overall results illustrate that predictable relationships between fruit and frugivore species can result from random encounters between mutualists.  相似文献   

13.
Aim We studied how the abundance of the highly invasive fruit‐bearing tree Miconia calvescens DC. influences seed dispersal networks and the foraging patterns of three avian frugivores. Location Tahiti and Moorea, French Polynesia. Methods Our study was conducted at six sites which vary in the abundance of M. calvescens. We used dietary data from three frugivores (two introduced, one endemic) to determine whether patterns of fruit consumption are related to invasive tree abundance. We constructed seed dispersal networks for each island to evaluate how patterns of interaction between frugivores and plants shift at highly invaded sites. Results Two frugivores increased consumption of M. calvescens fruit at highly invaded sites and decreased consumption of other dietary items. The endemic fruit dove, Ptilinopus purpuratus, consumed more native fruit than either of the two introduced frugivores (the red‐vented bulbul, Pycnonotus cafer, and the silvereye, Zosterops lateralis), and introduced frugivores showed a low potential to act as dispersers of native plants. Network patterns on the highly invaded island of Tahiti were dominated by introduced plants and birds, which were responsible for the majority of plant–frugivore interactions. Main conclusions Shifts in the diet of introduced birds, coupled with reduced populations of endemic frugivores, caused differences in properties of the seed dispersal network on the island of Tahiti compared to the less invaded island of Moorea. These results demonstrate that the presence of invasive fruit‐bearing plants and introduced frugivores can alter seed dispersal networks, and that the patterns of alteration depend both on the frugivore community and on the relative abundance of available fruit.  相似文献   

14.
Vertical stratification is a key feature of tropical forests and structures plant–frugivore interactions. However, it is unclear whether vertical differences in plant-frugivore interactions are due to differences among strata in plant community composition or inherent preferences of frugivores for specific strata. To test this, we observed fruit removal of a diverse frugivore community on the liana Marcgravia longifolia in a Peruvian rain forest. Unlike most other plants, Marcgravia longifolia produces fruits across forest strata. This enabled us to study effects of vertical stratification on fruit removal without confounding effects of plant species and stratum. We found a high number of visits of a few frugivore species in the understorey and a low number of visits of many different frugivores in the canopy and midstorey. Whereas partial and opportunistic frugivores foraged across strata with differing frequencies, obligate frugivores were only found eating fruits in the higher strata. Avian frugivores foraging in the canopy were mainly large species with pointed wings, whereas under- and midstorey avian foragers were smaller with rounded wings. Our findings suggest a continuous shift in the frugivore community composition along the vertical gradient, from a few generalized frugivores in the understorey to a diverse set of specialized frugivores in the canopy. This shift in the frugivore community leads to correlated, reciprocal changes from specialized to generalized plant-frugivore interactions. Thus, we conclude that vertical niche differentiation between species in tropical forests persists even when food resources are available across strata. This highlights its role for promoting biodiversity and ecosystem functioning.  相似文献   

15.
The effect of biodiversity on ecosystem functioning is increasingly well understood, but it has mainly been studied in small‐scale experiments of plant‐based ecosystem functions. In contrast, the relevance of biodiversity for animal‐mediated ecosystem functions like seed dispersal still poses an important gap in ecological knowledge. In particular, it is little understood how avian diversity affects frugivory rates, one of the most important parameters of seed dispersal rates, along large environmental gradients. Even less is known about the environmental context dependence of the frugivore–frugivory relationship. We used artificial fruits to analyze experimentally how the abundance and richness of three avian frugivore guilds (with incrementally more stringent classifications of frugivory) contributed to frugivory rates across 13 different habitat types along an elevational gradient from 870 to 4550 m a.s.l. at Mt Kilimanjaro, Tanzania. We further investigated how environmental context, in terms of local vegetation structure and natural fruit availability, modified the relationship between frugivores and frugivory rates. Our results demonstrate that the positive effect of avian diversity on frugivory rates holds along a large elevational gradient. We found marked differences in frugivory rates among the 13 habitat types, which were strongly related to the abundance and richness of obligate frugivorous birds. Vegetation structure had no significant effect on frugivory rates. An intermediate abundance of natural fruits enhanced frugivory rates, but this effect did not alter the positive frugivore–frugivory relationship. These results emphasize the fundamental importance of obligate frugivore diversity for frugivory rates and suggest that the positive effect of biodiversity on ecosystem functioning holds along large environmental gradients.  相似文献   

16.
Most tropical trees produce fleshy fruits that attract frugivores that disperse their seeds. Early demography and distribution for these tree species depend on the effects of frugivores and their behavior. Anthropogenic changes that affect frugivore communities could ultimately result in changes in tree distribution and population demography. We studied the frugivore assemblage at 38 fruiting Elmerrillia tsiampaca, a rain forest canopy tree species in Papua New Guinea. Elmerrillia tsiampaca is an important resource for frugivorous birds at our study site because it produces abundant lipid-rich fruits at a time of low fruit availability. We classified avian frugivores into functional disperser groups and quantified visitation rates and behavior at trees during 56 canopy and 35 ground observation periods. We tested predictions derived from other studies of plant–frugivore interactions with this little-studied frugivore assemblage in an undisturbed rain forest. Elmerrillia tsiampaca fruits were consumed by 26 bird species, but most seeds were removed by eight species. The most important visitors (Columbidae, Paradisaeidae and Rhyticeros plicatus) were of a larger size than predicted based on diaspore size. Columbidae efficiently exploited the structurally protected fruit, which was inconsistent with other studies in New Guinea where structurally protected fruits were predominantly consumed by Paradisaeidae. Birds vulnerable to predation foraged for short time periods, consistent with the hypothesis that predator avoidance enhances seed dispersal. We identified seven functional disperser groups, indicating there is little redundancy in disperser groups among the regular and frequent visitors to this tropical rain forest tree species.  相似文献   

17.
Carlo TA  Collazo JA  Groom MJ 《Oecologia》2003,134(1):119-131
Avian fruit consumption may ensure plant reproductive success when frugivores show consistent preference patterns and effectively remove and disperse seeds. In this study we examined avian fruit preferences and their seed-removal services at five study sites in north-central Puerto Rico. At each site, we documented the diet of seven common fruit-eating avian species from February to September 1998. Using foraging observations and area-based estimates of fruit abundance, we examined preference patterns of birds. We found that 7 out of 68 fleshy-fruited plant species were responsible for most of the fruit diet of birds. Seventeen plant species were preferred and four of them were repeatedly preferred across several study sites and times by at least one avian species. Preferred plant species comprised a small percentage of fleshy fruits at each site (<15% in four out of five study sites), but showed extended phenology patterns. The quantity of seeds removed by frugivore species was not strictly related to preferences. Some frugivores showing no preference could effectively remove more seeds from plants at some locations than species exhibiting constancy in their patterns of preference. Only two frugivores, Euphonia musica and Vireo altiloquous, removed most of the seeds of plants for which they exhibited repeated preference across the landscape. Preference patterns, particularly those exhibiting consistency in space and time for plant species having prolonged fruiting periods, may have important mechanistic consequences for the persistence, succession, and regeneration of tropical plant communities.  相似文献   

18.
《新西兰生态学杂志》2011,20(2):127-145
The relationship between fleshy-fruited indigenous species and adventive weeds in the diet of 500 mist-netted birds was studied in forest remnants of differing size and degree of modification. Fruit abundance Peaked in March and April, and most fruit was either red/orange or purple/black. The physical parameters of adventive and indigenous fruits were not significantly different. Six of the 15 passerine species netted are frugivores, and of those netted 77% had eaten fruit. They were divisible into three groups: endemic (bellbirds, Anthornis melanura; tuis, Prosthemadera novaeseelandiae), non-endemic but indigenous (silvereyes, Zosterops lateralis), and adventive (blackbirds, Turdus merula; song thrushes, T. philomelos; starlings, Sturnus vulgaris). Bird diets varied between the groups and according to fruit availability as determined by sires and seasons. Endemic birds ate the least adventive fruit; bellbirds ate mainly Podocarpus hallii and Coprosma robusta fruits at all sites. Tuis had a varied diet, including some adventive fruits. Silvereyes ate the widest range of indigenous and adventive fruits. Blackbirds and, to a smaller extent, song thrushes ate many of the same indigenous fruits as the other bird groups, but their diet included more adventive fruits, e.g., Berberis glaucocarpa. Starlings were caught only when they fed on Sambucus nigra, but they also ate a few indigenous fruits. There was little seasonal variation in bird numbers caught. Adventive species extended the seasonal availability of fruits into winter, particularly in the forest remnant closest to a town, which had the highest proportion of adventive fruits. Several weed species distributed mainly by non-endemic and adventive birds are forming new secondary vegetation. Some have large fruit crops which generally offer little food for endemic birds. Where fruiting weeds pre-empt sites that may have been occupied by native species, they create an inferior habitat for endemic birds. However, the non-endemic and adventive birds also disperse indigenous fruits into early successional vegetation, and the importance of their seed rain for conservation of biodiversity will therefore depend on the site.  相似文献   

19.
Seasonal fluctuations in climatic factors are expected to increase in future decades. However, little is known about the response of tropical species communities to seasonal fluctuations in climate and resource availability, particularly across different habitat types. We examined the relationship between spatio‐temporal fluctuations in the abundance of fruits and invertebrates and two avian feeding guilds, i.e. frugivores and insectivores, in forest and farmland habitats in western Kenya. Fruits and invertebrates fluctuated substantially throughout the year, but seasonal fluctuations were asynchronous between the two habitat types. Species richness and total abundance of frugivores and insectivores also fluctuated strongly and were closely related to the abundance of their respective resources. Frugivore species richness fluctuated anti‐cyclical in forest and farmland habitats, suggesting that several frugivorous species tracked fruit resources across habitat boundaries. In contrast, insectivorous bird richness fluctuated synchronously in the two habitat types, suggesting a lack of local‐scale movements across habitat boundaries. We conclude that bird communities strongly respond to seasonal fluctuations in resource availability, but responses differ between feeding guilds. While frugivores seem to respond flexibly to seasonal fluctuations, for instance by tracking fruit resources across habitat boundaries, insectivorous birds appear to be more susceptible to the expected increase in seasonal fluctuations in resource availability.  相似文献   

20.
PEGGY EBY 《Austral ecology》1998,23(5):443-456
Abstract The Grey-headed flying fox Pteropus poliocephalus Temminck 1825 is the only mammalian frugivore to occupy substantial areas of the subtropical rainforests of eastern Australia. The composition of the P. poliocephalus diet and diet specialization in the species are therefore pertinent to studies of trophic structure, seed dispersal and evolutionary processes in these forests. During a three-year diet study, P. poliocephalus used fruits from 44 species of canopy and edge plants. Their taxonomically diverse diet was dominated by the Myrtaceae and Moraceae. Dietary specialization by P. poliocephalus was examined using two criteria: the influence of fruit morphology on diet choice and dietary overlap with sympatric avian frugivores. There was no evidence from either approach that they were specialist feeders. Initial analyses comparing the morphological characters of diet fruits with fruits available to P. poliocephalus during the study period showed a preference for white fruits, berries, syconia and fruits with multiple seeds, and avoidance of black fruits and drupes. However, these significant results were not sustained when the confounding effects of correlations between fruit morphology and other traits were considered. All, except the response to berries, could be attributed to either avoidance by P. poliocephalus of secondary compounds in the Lauraceae or selection for the beneficial phenology of Ficus. Dietary overlap with frugivorous birds was notably high and the fruit diet of P. poliocephalus formed a subset of the avian diet. Associations between fruit colour, size and protective mechanisms have been documented in other rainforest areas and have been proposed as indicators of coadaptive relationships between vertebrate frugivores and their diet plants. However, these associations were not apparent in the morphological characters of fleshy fruits from Australian subtropical rainforest trees. An explanatory hypothesis of primarily avian influence on fruit traits is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号