首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HCV-related liver disease is the main cause of morbidity and mortality of HCV/HIV-1 co-infected patients. Despite the recent advent of anti-HCV direct acting antivirals (DAAs), the treatment of HCV/HIV-1 co-infected patients remains a challenge, as these patients are refractory to most therapies and develop liver fibrosis, cirrhosis and liver cancer more often than HCV mono-infected patients. Until the present study, there was no suitable in vitro assay to test the inhibitory activity of drugs on HCV/HIV-1 co-infection. Here we developed a novel in vitro “co-infection” model where HCV and HIV-1 concurrently replicate in their respective main host target cells—human hepatocytes and CD4+ T-lymphocytes. Using this co-culture model, we demonstrate that cyclophilin inhibitors (CypI), including a novel cyclosporin A (CsA) analog, CPI-431-32, simultaneously inhibits replication of both HCV and HIV-1 when added pre- and post-infection. In contrast, the HIV-1 protease inhibitor nelfinavir or the HCV NS5A inhibitor daclatasvir only blocks the replication of a single virus in the “co-infection” system. CPI-431-32 efficiently inhibits HCV and HIV-1 variants, which are normally resistant to DAAs. CPI-431-32 is slightly, but consistently more efficacious than the most advanced clinically tested CypI—alisporivir (ALV)—at interrupting an established HCV/HIV-1 co-infection. The superior antiviral efficacy of CPI-431-32 over ALV correlates with its higher potency inhibition of cyclophilin A (CypA) isomerase activity and at preventing HCV NS5A-CypA and HIV-1 capsid-CypA interactions known to be vital for replication of the respective viruses. Moreover, we obtained evidence that CPI-431-32 prevents the cloaking of both the HIV-1 and HCV genomes from cellular sensors. Based on these results, CPI-431-32 has the potential, as a single agent or in combination with DAAs, to inhibit both HCV and HIV-1 infections.  相似文献   

2.
Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV) infection are currently available. Pre-existence of resistance associated variants (RAVs) to direct antiviral agents (DAAs) reduces sustained virologic response (SVR) rates by 3–53% in hepatitis C virus (HCV) genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3), 11.9% (NS5A), and 22.1% (NS5B) with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%). Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.  相似文献   

3.
The therapy of chronic hepatitis C virus infections has significantly improved with the development of direct-acting antivirals (DAAs), which contain NS3/4A protease, NS5A, and NS5B polymerase inhibitors. However, mutations in specific residues in these viral target genes are associated with resistance to the DAAs. Especially inhibitors of NS3/4A protease and NS5A, such as grazoprevir and velpatasvir, have a low barrier to resistant mutations. As a result, the mutations influence the virological outcomes after DAA treatment. CypA inhibitors, as host-targeted agents, act on host factors to inhibit HCV replication, exhibiting a high resistance barrier and pan-genotype activities against HCV. Therefore, they can be developed into alternative, more effective anti-HCV agents. However, CypA inhibitors are natural products and analogs. Based on previous studies, bisamide derivatives were designed and synthesized to develop a novel class of CypA inhibitors. Bisamide derivative 7c is a promising compound with potent anti-HCV activity at subtoxic concentrations. Surface plasmon resonance experiments revealed that 7c directly binds to CypA. All these studies indicated that the derivative 7c is a potent CypA inhibitor, which can be used as a host-targeted agent in combination with other antiviral agents for anti-HCV treatment.  相似文献   

4.

Background and Objectives

Hepatitis C virus (HCV) variants that confer resistance to direct-acting-antiviral agents (DAA) have been detected by standard sequencing technology in genotype (G) 1 viruses from DAA-naive patients. It has recently been shown that virological response rates are higher and breakthrough rates are lower in G1b infected patients than in G1a infected patients treated with certain classes of HCV DAAs. It is not known whether this corresponds to a difference in the composition of G1a and G1b HCV quasispecies in regards to the proportion of naturally occurring DAA-resistant variants before treatment.

Methods

We used ultradeep pyrosequencing to determine the prevalence of low-abundance (<25% of the sequence reads) DAA-resistant variants in 191 NS3 and 116 NS5B isolates from 208 DAA-naive G1-infected patients.

Results

A total of 3.5 million high-quality reads of ≥200 nucleotides were generated. The median coverage depth was 4150x and 4470x per NS3 and NS5B amplicon, respectively. Both G1a and G1b populations showed Shannon entropy distributions, with no difference between G1a and G1b in NS3 or NS5B region at the nucleotide level. A higher number of substitutions that confer resistance to protease inhibitors were observed in G1a isolates (mainly at amino acid 80 of the NS3 region). The prevalence of amino acid substitutions that confer resistance to NS5B non-nucleoside inhibitors was similar in G1a and G1b isolates. The NS5B S282T variant, which confers resistance to the polymerase inhibitors mericitabine and sofosbuvir, was not detected in any sample.

Conclusion

The quasispecies genetic diversity and prevalence of DAA-resistant variants was similar in G1a and G1b isolates and in both NS3 and NS5B regions, suggesting that this is not a determinant for the higher level of DAA resistance observed across G1a HCV infected patients upon treatment.  相似文献   

5.
The prevalence of naturally occurring hepatitis C virus (HCV) variants that are less sensitive to direct-acting antiviral (DAA) inhibitors has not been fully characterized. We used population sequence analysis to assess the frequency of such variants in plasma samples from 3,447 DAA-naive patients with genotype 1 HCV. In general, HCV variants with lower-level resistance (3- to 25-fold increased 50% inhibitor concentration [IC50]) to telaprevir were observed as the dominant species in 0 to 3% of patients, depending on the specific variant, whereas higher-level resistant variants (>25-fold-increased IC50) were not observed. Specific variants resistant to NS5A inhibitors were predominant in up to 6% of patients. Most variants resistant to nucleo(s/t)ide active-site NS5B polymerase inhibitors were not observed, whereas variants resistant to non-nucleoside allosteric inhibitors were observed in up to 18% of patients. The presence of DAA-resistant variants in NS5A, NS5B, or NS3 (including telaprevir-resistant variants), in baseline samples of treatment-naive patients receiving a telaprevir-based regimen in phase 3 studies did not affect the sustained viral response (SVR). Treatment-naive patients with viral populations containing the telaprevir-resistant variants NS3 V36M, T54S, or R155K at baseline achieved a 74% SVR rate, whereas patients with no resistant variants detected prior to treatment achieved a 76% SVR rate. The effect of specific resistant variant frequency on response to various DAA treatments in different patient populations, including interferon nonresponders, should be further studied.  相似文献   

6.
The recently approved interferon-free DAA (direct antiviral agents) regimens have shown not only to be effective in terms of sustained virological response (SVR) rates (>?90%) but also well tolerated in most hepatitis C virus (HCV) infected patients. Nevertheless HCV genotypes are different and only a small percentage of trials consider genotype 4 (GT4), which was associated with lower rates of SVR compared with other genotypes before the arrival of the DAA’s. In this review, we discuss the efficacy of DAA therapy in GT4 HCV infection with specific reference to more recent studies, including those conducted in a ‘field-practice’ scenario. Overall, DAA-based regimens appear more effective also in the poorly-explored setting of patients with HCV GT4 infection. Despite an overall limited number of patients was evaluated, favorable results are being derived from studies on ombitasvir/paritaprevir/ritonavir, sofosbuvir and velpatasvir, whether or not in association with voxilaprevir, and with the new combined therapy glecaprevir + pibentasvir.  相似文献   

7.
Hepatitis C virus (HCV) is the most prevalent viral pathogen that infects more than 185 million people worldwide. HCV infection leads to chronic liver diseases such as liver cirrhosis and hepatocellular carcinoma. Direct-acting antivirals (DAAs) are the recent combination therapy for HCV infection with reduced side effects than prior therapies. Sustained virological response (SVR) acts as a gold standard marker to monitor the success of antiviral treatment. Older treatment therapies attain 50-55% of SVR compared with DAAs which attain around 90-95%. The current review emphasizes the recent chemogenomic updates that have been unfolded through structure-based drug design of HCV drug target proteins (NS3/4A, NS5A, and NS5B) and ligand-based drug design of DAAs in achieving a stable HCV viral treatment strategies.  相似文献   

8.
Sun HY  Ou NY  Wang SW  Liu WC  Cheng TF  Shr SJ  Sun KT  Chang TT  Young KC 《PloS one》2011,6(9):e25530
Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV) sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd) nucleotide of the 5'UTR with the 14(th), 41(st), 76(th), 110(th), 211(th) and 212(th) residues of NS2 and with the 71(st), 175(th) and 621(st) residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR??? and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR??? depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR???-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR??? co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.  相似文献   

9.
For many years, the standard of treatment for hepatitis C virus (HCV) infection was a combination of pegylated interferon alpha (Peg-IFN-α) and ribavirin for 24–48 weeks. This treatment regimen results in a sustained virologic response (SVR) rate in about 50 % of cases. The failure of IFN-α-based therapy to eliminate HCV is a result of multiple factors including a suboptimal treatment regimen, severity of HCV-related diseases, host factors and viral factors. In recent years, advances in HCV cell culture have contributed to a better understanding of the viral life cycle, which has led to the development of a number of direct-acting antiviral agents (DAAs) that target specific key components of viral replication, such as HCV NS3/4A, HCV NS5A, and HCV NS5B proteins. To date, several new drugs have been approved for the treatment of HCV infection. Application of DAAs with IFN-based or IFN-free regimens has increased the SVR rate up to >90 % and has allowed treatment duration to be shortened to 12–24 weeks. The impact of HCV proteins in response to IFN-based and IFN-free therapies has been described in many reports. This review summarizes and updates knowledge on molecular mechanisms of HCV proteins involved in anti-IFN activity as well as examining amino acid variations and mutations in several regions of HCV proteins associated with the response to IFN-based therapy and pattern of resistance associated amino acid variants (RAV) to antiviral agents.  相似文献   

10.

Background

The treatment of hepatitis C (HCV) infections has significantly changed in the past few years due to the introduction of direct-acting antiviral agents (DAAs). DAAs could improve the sustained virological response compared to pegylated interferon with ribavirin (PR). However, there has been no evidence from randomized controlled trials (RCTs) that directly compare the efficacy among the different regimens of DAAs.

Aim

Therefore, we performed a systematic review and network meta-analysis aiming to compare the treatment efficacy between different DAA regimens for treatment naïve HCV genotype 1.

Methods

Medline and Scopus were searched up to 25th May 2015. RCTs investigating the efficacy of second generation DAA regimens for treatment naïve HCV genotype 1 were eligible for the review. Due to the lower efficacy and more side effects of first generation DAAs, this review included only second generation DAAs approved by the US or EU Food and Drug Administration, that comprised of simeprevir (SMV), sofosbuvir (SOF), daclatasvir (DCV), ledipasvir (LDV), and paritaprevir/ritonavir/ombitasvir plus dasabuvir (PrOD). Primary outcomes were sustained virological response at weeks 12 (SVR12) and 24 (SVR24) after the end of treatment and adverse drug events (i.e. serious adverse events, anemia, and fatigue). Efficacy of all treatment regimens were compared by applying a multivariate random effect meta-analysis. Incidence rates of SVR12 and SVR24, and adverse drug events of each treatment regimen were pooled using ‘pmeta’ command in STATA program.

Results

Overall, 869 studies were reviewed and 16 studies were eligible for this study. Compared with the PR regimen, SOF plus PR, SMV plus PR, and DVC plus PR regimens yielded significantly higher probability of having SVR24 with pooled risk ratios (RR) of 1.98 (95% CI 1.24, 3.14), 1.46 (95% CI: 1.22, 1.75), and 1.68 (95% CI: 1.14, 2.46), respectively. Pooled incidence rates of SVR12 and SVR24 in all treatment regimens without PR, i.e. SOF plus LDV with/without ribavirin, SOF plus SMV with/without ribavirin, SOF plus DCV with/without ribavirin, and PrOD with/without ribavirin, (pooled incidence of SVR12 ranging from 93% to 100%, and pooled incidence of SVR24 ranging from 89% to 96%) were much higher than the pooled incidence rates of SVR12 (51%) and SVR24 (48%) in PR alone. In comparing SOF plus LDV with ribavirin and SOF plus LDV without ribavirin, the chance of having SVR12 was not significantly different between these two regimens, with the pooled RR of 0.99 (95% CI: 0.97, 1.01). Regarding adverse drug events, risk of serious adverse drug events, anemia and fatigue were relatively higher in treatment regimens with PR than the treatment regimens without PR. The main limitation of our study is that a subgroup analysis according to dosages and duration of treatment could not be performed. Therefore, the dose and duration of recommended treatment have been suggested in range and not in definite value.

Conclusions

Both DAA plus PR and dual DAA regimens should be included in the first line drug for treatment naïve HCV genotype 1 because of the significant clinical benefits over PR alone. However, due to high drug costs, an economic evaluation should be conducted in order to assess the value of the investment when making coverage decisions.  相似文献   

11.
Abstract In recent months, there has been a wealth of promising clinical data suggesting that a more effective treatment regimen, and potentially a cure, for hepatitis C virus (HCV) infection is close at hand. Leading this push are direct-acting antivirals (DAAs), currently comprising inhibitors that target the HCV protease NS3, the viral polymerase NS5B, and the non-structural protein NS5A. In combination with one another, along with the traditional standard-of-care ribavirin and PEGylated-IFNα, these compounds have proven to afford tremendous efficacy to treatment-naíve patients, as well as to prior non-responders. Nevertheless, by targeting viral components, the possibility of selecting for breakthrough and treatment-resistant virus strains remains a concern. Host-targeting antivirals are a distinct class of anti-HCV compounds that is emerging as a complementary set of tools to combat the disease. Cyclophilin (Cyp) inhibitors are one such group in this category. In contrast to DAAs, Cyp inhibitors target a host protein, CypA, and have also demonstrated remarkable antiviral efficiency in clinical trials, without the generation of viral escape mutants. This review serves to summarize the current literature on Cyps and their relation to the HCV viral life cycle, as well as other viruses.  相似文献   

12.
The current standard of care for hepatitis C virus (HCV)-infected patients consists of lengthy treatment with interferon and ribavirin. To increase the effectiveness of HCV therapy, future regimens will incorporate multiple direct-acting antiviral (DAA) drugs. Recently, the HCV-encoded NS5A protein has emerged as a promising DAA target. Compounds targeting NS5A exhibit remarkable potency in vitro and demonstrate early clinical promise, suggesting that NS5A inhibitors could feature in future DAA combination therapies. Since the mechanisms through which these molecules operate are unknown, we have used NS5A inhibitors as tools to investigate their modes of action. Analysis of replicon-containing cells revealed dramatic phenotypic alterations in NS5A localization following treatment with NS5A inhibitors; NS5A was redistributed from the endoplasmic reticulum to lipid droplets. The NS5A relocalization did not occur in cells treated with other classes of HCV inhibitors, and NS5A-targeting molecules did not cause similar alterations in the localization of other HCV-encoded proteins. Time course analysis of the redistribution of NS5A revealed that the transfer of protein to lipid droplets was concomitant with the onset of inhibition, as judged by the kinetic profiles for these compounds. Furthermore, analysis of the kinetic profile of inhibition for a panel of test molecules permitted the separation of compounds into different kinetic classes based on their modes of action. Results from this approach suggested that NS5A inhibitors perturbed the function of new replication complexes, rather than acting on preformed complexes. Taken together, our data reveal novel biological consequences of NS5A inhibition, which may help enable the development of future assay platforms for the identification of new and/or different NS5A inhibitors.  相似文献   

13.
The current available treatment for hepatitis C virus (HCV)—the causative of liver cirrhosis and development of liver cancer—is a dual therapy using modified interferon and ribavirin. While this regimen increases the sustained viral response rate up to 40–80 % in different genotypes, unfortunately, it is poorly tolerated by patients. PSI-7977, a prodrug for PSI-7409, is a Non-Structural 5b (NS5b) polymerase nucleoside inhibitor that is currently in phase III clinical trials. The activated PSI-7977 is a direct acting antiviral (DAA) drug that acts on NS5b polymerase of HCV through a coordination bond with the two Mg+2 present at the GDD active site motif. The present work utilizes a molecular modeling approach for studying the interaction between the activated PSI-7977 and the 12 amino acids constituting a 5 Å region surrounding the GDD active triad motif for HCV genotypes 1a, 2b, 3b and 4a. The analysis of the interaction parameters suggests that PSI-7977 is probably a better DAA drug for HCV genotypes 1a and 3b rather than genotypes 2b and 4a.  相似文献   

14.
15.
Hepatitis C virus (HCV) infection affects ≥ 180 million individuals worldwide especially those living in developing countries. Recent advances in direct-acting therapeutics promise effective treatments for chronic HCV carriers, but only if the affected individuals are identified. Good treatment coverage therefore requires accurate epidemiological data on HCV infection. In 2014, we determined the current prevalence of HCV in Thailand to assess whether over the past decade the significant number of chronic carriers had changed. In total, 5964 serum samples from Thai residents between 6 months and 71 years of age were obtained from 7 provinces representing all 4 geographical regions of Thailand and screened for the anti-HCV antibody. Positive samples were further analyzed using RT-PCR, sequencing, and phylogenetic analysis to identify the prevailing HCV genotypes. We found that 56 (0.94%) samples tested positive for anti-HCV antibody (mean age = 36.6±17.6 years), while HCV RNA of the core and NS5B subgenomic regions was detected in 23 (41%) and 19 (34%) of the samples, respectively. The seropositive rates appeared to increase with age and peaked in individuals 41–50 years old. These results suggested that approximately 759,000 individuals are currently anti-HCV-positive and that 357,000 individuals have viremic HCV infection. These numbers represent a significant decline in the prevalence of HCV infection. Interestingly, the frequency of genotype 6 variants increased from 8.9% to 34.8%, while the prevalence of genotype 1b declined from 27% to 13%. These most recent comprehensive estimates of HCV burden in Thailand are valuable towards evidence-based treatment coverage for specific population groups, appropriate allocation of resources, and improvement in the national public health policy.  相似文献   

16.
17.
Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2alpha in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2alpha phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.  相似文献   

18.
HCV NS5B RNA-dependent RNA polymerase (NS5B) is essential for viral replication and is therefore considered a target for antiviral drug development. From our ongoing screening effort in the search for new anti-HCV agents, a novel inhibitor 1 with low microM activity against the HCV NS5B polymerase was identified. SAR analysis indicated the optimal substitution pattern required for activity, for example, carboxylic acid group at 2-position of thiophene ring. We describe the steps taken to identify and solve the bioactive conformation of derivative 6 through the use of the transferred NOE method (trNOE).  相似文献   

19.
20.

Background

Direct acting antivirals (DAAs) provide efficient hepatitis C virus (HCV) therapy and clearance for a majority of patients, but are not available or effective for all patients. They risk developing HCV-induced hepatocellular carcinoma (HCC), for which the mechanism remains obscure and therapy is missing. Annexin A2 (AnxA2) has been reported to co-precipitate with the non-structural (NS) HCV proteins NS5B and NS3/NS4A, indicating a role in HCC tumorigenesis and effect on DAA therapy.

Methods

Surface plasmon resonance biosensor technology was used to characterize direct interactions between AnxA2 and HCV NS5B, NS3/NS4 and RNA, and the subsequent effects on catalysis and inhibition.

Results

No direct interaction between AnxA2 and NS3/NS4A was detected, while AnxA2 formed a slowly dissociating, high affinity (K D?=?30 nM), complex with NS5B, decreasing its catalytic activity and affinity for the allosteric inhibitor filibuvir. The RNA binding of the two proteins was independent and AnxA2 and NS5B interacted with different RNAs in ternary complexes of AnxA2:NS5B:RNA, indicating specific preferences.

Conclusions

The complex interplay revealed between NS5B, AnxA2, RNA and filibuvir, suggests that AnxA2 may have an important role for the progression and treatment of HCV infections and the development of HCC, which should be considered also when designing new allosteric inhibitors.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号