首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染引起的一种急性、出血性猪传染病,给疫情发生国家(地区)的养猪业造成重大经济损失.ASFV为双股DNA病毒,基因组含有150~167个开放阅读框(ORFs),可编码150~200种蛋白质,其中非结构蛋白有100余种.ASFV编码的酶、转录因子、调节宿主细胞功能蛋白和病毒免疫逃逸相关蛋白等作为重要的非结构蛋白,在病毒核苷酸代谢、DNA复制、修复、转录、蛋白修饰以及病毒与宿主细胞相互作用等过程中发挥重要作用,但仍有许多非结构蛋白的功能尚不明晰.因此,本文综述了 ASFV非结构蛋白在病毒感染中的作用,以期为ASFV非结构蛋白的进一步研究提供参考.  相似文献   

2.
3.
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起猪的一种急性、高度致死性传染病.该病在全世界多个地方流行,导致该病流行的原因之一是缺乏有效的预防及治疗药物、疫苗等.尽管ASFV基因总的突变率相对其基因组来说较低,但是,与其它病毒相比,其基因突变总数则相当巨大.研究发现ASFV的多个基因具有高突变率的特性,表现为基因多样性,此外,由于该病毒为核质大DNA病毒,编码大量蛋白,其抗原也表现为多样性.本文总结了 ASFV基因多样性和抗原多样性,分析其发生原理并综述了最新研究成果,以期为研究ASFV病毒遗传演化、开发疫苗及指导疫情防控提供思路.  相似文献   

4.
5.
The pathogenesis of African swine fever virus (ASFV) infection in Ornithodoros porcinus porcinus was examined in nymphal ticks infected with the ASFV isolate Chiredzi/83/1. At times postinfection (p.i.) ranging from 6 h to 290 days, ticks or dissected tick tissues were titrated for virus and examined ultrastructurally for evidence of virus replication. The ASFV infection rate in ticks was 100% in these experiments, and virus infection was not associated with a significant increase in tick mortality. Initial ASFV replication occurred in phagocytic digestive cells of the midgut epithelium. Subsequent infection and replication of ASFV in undifferentiated midgut cells was observed at 15 days p.i. Generalization of virus infection from midgut to other tick tissues required 2 to 3 weeks and most likely involved virus movement across the basal lamina of the midgut into the hemocoel. Secondary sites of virus replication included hemocytes (type I and II), connective tissue, coxal gland, salivary gland, and reproductive tissue. Virus replication was not observed in the nervous tissue of the synganglion, Malpighian tubules, and muscle. Persistent infection, characterized by active virus replication, was observed for all involved tick tissues. After 91 days p.i., viral titers in salivary gland and reproductive tissue were consistently the highest detected. Successful tick-to-pig transmission of ASFV at 48 days p.i. correlated with high viral titers in salivary and coxal gland tissue and their secretions. A similar pattern of virus infection and persistence in O. porcinus porcinus was observed for three additional ASFV tick isolates in their associated ticks.African swine fever (ASF) is a highly lethal disease of domestic pigs for which animal slaughter and area quarantine are the only methods of disease control. African swine fever virus (ASFV), the causative agent of ASF, is a large double-stranded DNA virus which is the only member of an unnamed family of viruses. ASFV is the only known DNA arbovirus (4, 6, 12). The natural arthropod host for ASFV is Ornithodoros porcinus porcinus (Walton) ticks (40). Some confusion exists in earlier reports since ticks that should be classified as O. porcinus porcinus are often referred to as either O. moubata porcinus or simply O. moubata (59).ASFV can infect hosts through either a sylvatic cycle or a domestic cycle. In the sylvatic cycle, ASFV infects warthogs (Phacochoerus aethiopicus) and bushpigs (Potamochoerus spp.) as well as ticks of the genus Ornithodoros (710, 36, 55). In sub-Saharan Africa, warthogs occupy burrows which are frequently infested with large numbers of O. porcinus porcinus ticks (38, 45, 57, 58), and a correlation, though not absolute, has been established between ASFV infection of warthogs and the presence of O. porcinus porcinus ticks in burrows (57). In ASFV-enzootic areas, adult warthogs are typically nonviremic, although most are seropositive (28, 41, 46, 53, 58), and virus can usually be isolated only from lymph nodes (28, 41). Young warthogs, which are confined to the burrow for the first months of life, are most likely to be infected through feeding of infected O. porcinus porcinus ticks. Infection in young warthogs is subclinical, with viremic titers ranging from 2 to 3 log10 50% hemadsorption dose (HAD50)/ml (56, 57), a level sufficient to infect a low percentage of naive ticks (42, 58, 30). The sylvatic ASFV cycle is further maintained by transovarial (43) and venereal (44) transmission in ticks. In burrows containing ASFV-infected ticks, infection rates are typically low (<2%), with the highest rate occurring in adult females (40, 45, 57, 65). The mechanism of ASFV transmission from the sylvatic cycle in Africa to the domestic cycle is most likely through feeding of infected ticks on pigs (41, 58), since direct contact between infected warthogs and domestic pigs has failed to result in transmission (36, 10, 28, 58), except in a single case (8). The virus may be transmitted between domestic pigs by either direct or indirect contact (33).Various characteristics of ASFV infection have been studied in a number of Ornithodoros spp. ticks. The first association of ASFV with a tick was made by Sanchez-Botija (50), who reported isolation of ASFV from O. erraticus, a tick native to the Iberian peninsula and later considered important to maintenance of ASFV in an enzootic cycle in that region (51). In the first experimental infection, striking differences were found in the percentage of O. moubata porcinus ticks infected by two different ASFV isolates, a low infectious dose for ticks (ranging from of 0.9 to 4 log10 HAD50) was demonstrated, and transmission out to 469 days postinfection (p.i.) was successful with single ticks (42). Experimental ASFV infection and transmission to pigs has been demonstrated for O. savignyi, a tick found in Africa (34), O. coriaceus (23, 25) and O. turicata (25), ticks indigenous to the United States, and O. puertoricensis (25, 14), a tick indigenous to the Caribbean. A 40% mortality rate was found in infected O. coriaceus (25) and O. puertoricensis ticks (15). O. marocanus, which was formerly referred to as O. erraticus, transmitted ASFV out to 588 days p.i., although 73% mortality was reported for infected ticks (16, 17). A number of reports have not found significant virus-induced mortality in O. moubata porcinus ticks (22, 4044). In contrast, mortality rates were 35% higher in infected O. moubata porcinus females in the only study to examine mortality during the gonotrophic cycle (26).Specific aspects of ASFV infection in the natural host remain poorly understood. Greig (22) experimentally infected O. moubata porcinus ticks with pathogenic ASFV isolates and used virus titration and immunofluorescence of dissected tissues to determine that the midgut was the initial site of viral replication and the site of longest persistence. Several other tissues were also found to have detectable levels of virus, although the midgut was the only tissue which was consistently positive. The presence of ASFV has been demonstrated in hemocytes of infected O. coriaceus ticks by electron microscopy and immunofluorescence studies, but the presence or nature of virus replication was not addressed (13).Here we describe the pathogenesis and persistence of ASFV infection in O. porcinus porcinus ticks. Our data indicate that initial ASFV replication occurs in phagocytic digestive cells of the midgut epithelium, with secondary replication occurring in undifferentiated midgut cells at later times p.i. Generalization of virus infection from the midgut to other tick tissues required 2 to 3 weeks. Secondary sites of virus replication include hemocytes (type I and II), coxal gland, salivary gland, connective tissue, and reproductive tissue. Successful tick-to-pig transmission correlated with relatively high viral titers in salivary and coxal glands. Persistent infection in the tick involves continuous viral replication in several tissues and is associated with minimal cytopathology.  相似文献   

6.
We have analyzed the production of tumor necrosis factor alpha (TNF-α) induced by in vitro infection with African swine fever (ASF) virus (ASFV) and the systemic and local release of this inflammatory cytokine upon in vivo infection. An early increase in TNF-α mRNA expression was detected in ASFV-infected alveolar macrophages, and high levels of TNF-α protein were detected by ELISA in culture supernatants from these cells. When animals were experimentally infected with a virulent isolate (E-75), enhanced TNF-α expression in mainly affected organs correlated with viral protein expression. Finally, elevated levels of TNF-α were detected in serum, corresponding to the onset of clinical signs. TNF-α has been reported to be critically involved in the pathogenesis of major clinical events in ASF, such as intravascular coagulation, tissue injury, apoptosis, and shock. In the present study, TNF-α containing supernatants from ASFV-infected cultures induced apoptosis in uninfected lymphocytes; this effect was partially abrogated by preincubation with an anti-TNF-α specific antibody. These results suggest a relevant role for TNF-α in the pathogenesis of ASF.  相似文献   

7.
Ten commercially available disinfectants were tested at high pH in 2% sodium hydroxide and low pH in 2% acetic acid as inactivants for African swine fever (ASF) in a protein-rich blood-spleen homogenate. As assayed in leukocyte cultures, sodium hydroxide and acetic acid, sodium meta silicate and Roccal did not inactivate ASF virus in 1 hr at 22 to 25 C. Some viricidal activity as assayed in leukocyte cultures was found with Weladol, Triton X-100 Amphyl, pHisoHex, sodium dodecyl sulfate, LpH, Environ, Environ D, and One-Stroke Environ. Of these, the last four appeared to be most promising. When assayed in pigs, only One-Stroke Environ (1/E) was viricidal. Concentrations of 1.0, 0.75, and 0.5 were effective, but, at 0.25%, virus was not inactivated. The minimal time to inactivate ASF virus by 1% 1/E is 60 min. A room contaminated with ASF virus was made safe for pigs after 1 hr by spraying with 1% 1/E. The most active component of 1/E is o-phenylphenol. Although another component of 1/E, i.e., o-benzyl-p-chlorophenol, also has some activity, the mixture of the active components of 1/E is most effective against ASF virus. One of the soluble antigens associated with ASF virus is destroyed by 1/E.  相似文献   

8.
Although the Malawi Lil20/1 (MAL) strain of African swine fever virus (ASFV) was isolated from Ornithodoros sp. ticks, our attempts to experimentally infect ticks by feeding them this strain failed. Ten different collections of Ornithodorus porcinus porcinus ticks and one collection of O. porcinus domesticus ticks were orally exposed to a high titer of MAL. At 3 weeks postinoculation (p.i.), <25% of the ticks contained detectable virus, with viral titers of <4 log(10) 50% hemadsorbing doses/ml. Viral titers declined to undetectability in >90% of the ticks by 5 weeks p.i. To further study the growth defect, O. porcinus porcinus ticks were orally exposed to MAL and assayed at regular intervals p.i. Whole-tick viral titers dramatically declined (>1,000-fold) between 2 and 6 days p.i., and by 18 days p.i., viral titers were below the detection limit. In contrast, viral titers of ticks orally exposed to a tick-competent ASFV isolate, Pretoriuskop/96/4/1 (Pr4), increased 10-fold by 10 days p.i. and 50-fold by 14 days p.i. Early viral gene expression, but not extensive late gene expression or viral DNA synthesis, was detected in the midguts of ticks orally exposed to MAL. Ultrastructural analysis demonstrated that progeny virus was rarely present in ticks orally exposed to MAL and, when present, was associated with extensive cytopathology of phagocytic midgut epithelial cells. To determine if viral replication was restricted only in the midgut epithelium, parenteral inoculations into the hemocoel were performed. With inoculation by this route, a persistent infection was established although a delay in generalization of MAL was detected and viral titers in most tissues were typically 10- to 1,000-fold lower than those of ticks injected with Pr4. MAL was detected in both the salivary secretion and coxal fluid following feeding but less frequently and at a lower titer compared to Pr4. Transovarial transmission of MAL was not detected after two gonotrophic cycles. Ultrastructural analysis demonstrated that, when injected, MAL replicated in a number of cell types but failed to replicate in midgut epithelial cells. In contrast, ticks injected with Pr4 had replicating virus in midgut epithelial cells. Together, these results indicate that MAL replication is restricted in midgut epithelial cells. This finding demonstrates the importance of viral replication in the midgut for successful ASFV infection of the arthropod host.  相似文献   

9.
African swine fever virus (ASFV) is a large DNA virus that enters host cells after receptor-mediated endocytosis and depends on acidic cellular compartments for productive infection. The exact cellular mechanism, however, is largely unknown. In order to dissect ASFV entry, we have analyzed the major endocytic routes using specific inhibitors and dominant negative mutants and analyzed the consequences for ASFV entry into host cells. Our results indicate that ASFV entry into host cells takes place by clathrin-mediated endocytosis which requires dynamin GTPase activity. Also, the clathrin-coated pit component Eps15 was identified as a relevant cellular factor during infection. The presence of cholesterol in cellular membranes, but not lipid rafts or caveolae, was found to be essential for a productive ASFV infection. In contrast, inhibitors of the Na+/H+ ion channels and actin polymerization inhibition did not significantly modify ASFV infection, suggesting that macropinocytosis does not represent the main entry route for ASFV. These results suggest a dynamin-dependent and clathrin-mediated endocytic pathway of ASFV entry for the cell types and viral strains analyzed.Many animal viruses have evolved to exploit endocytosis to gain entry into host cells after initial attachment of virions to specific cell surface receptors. To date, a number of different routes of endocytosis used by viruses have been characterized, including clathrin-mediated endocytosis, uptake via caveolae/lipid rafts, macropinocytosis, phagocytosis, and other routes that are currently poorly understood.In recent years, viruses have also been used as tools to study cellular endocytosis and membrane trafficking at the molecular level, with there being special interest in the regulation of the diverse routes (31), since examples of viruses using each route can be found (reviewed in references 26, 31, and 38). The clathrin-mediated endocytic route has been the most extensively studied at the molecular level, and it has been shown to be used by diverse mammalian enveloped viruses, such as vesicular stomatitis virus (42), Semliki Forest virus (19), and West Nile virus (11), to infect cells. Influenza virus and HIV-1 also can use this pathway as an alternative route of entry (12, 39). Clathrin is assembled on the inside face of the plasma membrane to form a characteristic coated pit (CCP). During this process, clathrin also interacts with a number of essential molecules, including Eps15, adapter protein AP2, and dynamin GTPase (9). Additionally, clathrin-mediated endocytosis also provides endocytic vesicles as an acidified environment for those viruses that require a low-pH step during the first stages of infection to initiate capsid destabilization and genome uncoating. On the other hand, the lipid raft/caveola-based route is generally used by those acid-independent viruses. Recently, macropinocytosis is generating growing interest, since it has been demonstrated to be induced by some viruses from diverse families, such as vaccinia virus and adenovirus serotype 3 (5, 29), to gain entry into cells.In this study, we have focused on the entry of African swine fever virus (ASFV), a large enveloped DNA virus with a genomic composition similar to that of poxviruses, although the virion structure and morphology resemble those of iridoviruses. At present, it is the sole member of the newly created family Asfarviridae (16, 43). It is the etiologic agent responsible for a highly lethal and hemorrhagic disease affecting domestic swine, which often results in important economic losses in affected countries because of the high rate of mortality associated with this illness and the lack of an effective vaccine.Early studies of the entry of BA71V, a Vero cell-adapted ASFV strain, into host cells showed that this internalization of virus particles is a temperature-, energy-, and low-pH-dependent process, since it does not occur at 4°C or in the presence of inhibitors of cellular respiration or lysosomotropic agents (2, 44). All these features are consistent with a receptor-mediated endocytosis mechanism of entry. However, there are still numerous questions to be answered. One of them is the nature of the cellular receptor(s) that mediates ASFV entry, which remains largely unknown, although a correlation between cell susceptibility to infection and expression of porcine CD163 on the surface of swine monocytes/macrophages has been reported (36). In regard to the viral components involved in this initial step, the p12 and p54 proteins were shown to play a role during attachment to the cell surface and p30 during internalization, as inferred from previous studies with neutralizing antibodies against p30 and p54 (17) and blockage of infection after saturation of virus binding sites with recombinant p12 (6). Early electron microscopy (EM) studies (2, 45) revealed that attachment of ASFV virions to the cell surface often occurs in coated pits; however, their later presence inside coated vesicles is not fully clear. After attachment, virions are detected inside endosomes, where fusion with the viral membrane takes place. The ASFV cycle continues with the transport of viral cores via retrograde transport along microtubules to reach a perinuclear area, known as the viral factory, where replication occurs (4).In recent times, knowledge about different endocytic pathways and their regulatory molecules has notably increased, and the development of molecular tools to study these processes is becoming increasingly precise (38). In the present study, we examined the ASFV infection using a variety of chemical inhibitors and dominant negative molecules to disrupt different endocytic pathways. Our results confirmed a major role for dynamin-dependent and clathrin-mediated endocytosis during the first stages of ASFV infection, with no significant differences in the behavior of the two ASFV strains and the two cell lines analyzed.  相似文献   

10.
非洲猪瘟病毒的分子生物学研究进展   总被引:5,自引:0,他引:5  
常华  花群义  段纲 《微生物学通报》2007,34(3):0572-0575
非洲猪瘟是一类动物传染病,致死率高达100%,在我国虽未发现该病,但一旦发生会给畜牧养殖业带来巨大经济损失。文中概述了非洲猪瘟病毒的分类、形态、基因组特征、主要结构蛋白,以及分子生物学诊断技术的研究进展。为进一步研究该病毒的复制机理、毒力、致病机理及疫苗的开发提供参考依据。  相似文献   

11.
African swine fever virus (ASFV), like other complex DNA viruses, deploys a variety of strategies to evade the host''s defence systems, such as inflammatory and immune responses and cell death. Here, we analyse the modifications in the translational machinery induced by ASFV. During ASFV infection, eIF4G and eIF4E are phosphorylated (Ser1108 and Ser209, respectively), whereas 4E-BP1 is hyperphosphorylated at early times post infection and hypophosphorylated after 18 h. Indeed, a potent increase in eIF4F assembly is observed in ASFV-infected cells, which is prevented by rapamycin treatment. Phosphorylation of eIF4E, eIF4GI and 4E-BP1 is important to enhance viral protein production, but is not essential for ASFV infection as observed in rapamycin- or CGP57380-treated cells. Nevertheless, eIF4F components are indispensable for ASFV protein synthesis and virus spread, since eIF4E or eIF4G depletion in COS-7 or Vero cells strongly prevents accumulation of viral proteins and decreases virus titre. In addition, eIF4F is not only activated but also redistributed within the viral factories at early times of infection, while eIF4G and eIF4E are surrounding these areas at late times. In fact, other components of translational machinery such as eIF2α, eIF3b, eIF4E, eEF2 and ribosomal P protein are enriched in areas surrounding ASFV factories. Notably, the mitochondrial network is polarized in ASFV-infected cells co-localizing with ribosomes. Thus, translation and ATP synthesis seem to be coupled and compartmentalized at the periphery of viral factories. At later times after ASFV infection, polyadenylated mRNAs disappear from the cytoplasm of Vero cells, except within the viral factories. The distribution of these pools of mRNAs is similar to the localization of viral late mRNAs. Therefore, degradation of cellular polyadenylated mRNAs and recruitment of the translation machinery to viral factories may contribute to the inhibition of host protein synthesis, facilitating ASFV protein production in infected cells.  相似文献   

12.
To ascertain the role played by the various liver monocyte-macrophage populations in the course of a viral hemorrhagic fever, fifteen pigs were inoculated intramuscularly with the highly virulent isolate of African Swine Fever Virus (ASFV) Espa?a-70 and slaughtered at 1-7 days post-inoculation (dpi). Samples of liver were fixed in different solutions and routinely processed for morphological, immunohistochemical and ultrastructural studies. Viral antigen (vp73) was detected from 3 dpi onward, mainly in circulating monocytes of sinusoid and Kupffer's cells (KC), as well as in portal macrophages and hepatocytes from 5 dpi. Anti-SWC3 immunolabelled cells were increased from 1 dpi, peaking between 3 and 5 dpi, thereafter declining until the end of the experiment. The significant increase in the number of sinusoidal circulating monocytes and KC expressing IL-1alpha, TNFalpha and IL-6 from 1 dpi, confirmed the secretory activation of these cells. The results show that in the course of an ASFV-induced hemorrhagic syndrome, hepatic macrophage populations undergo major quantitative and biosynthetic changes prior to virus detection, suggesting the existence of a mechanism by which the virus concentrates infectable cells, which subsequently spread the virus around the body.  相似文献   

13.
曾喻兵  李飞  朱玲  徐志文 《病毒学报》2021,37(4):957-963
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染引起的一种急性、热性、高度接触性、致死性动物传染病.由于ASFV基因组庞大,变异能力强,免疫逃逸机制复杂,至今无有效药物和疫苗.近年来,对多基因家族的研究取得了很大的进展,可变区多基因家族拷贝数变化是导致ASFV变异的主要原因,且陆续发现多基因家族在决定细胞宿主范围、影响病毒毒力强弱、抑制Ⅰ型干扰素信号通路、抑制干扰素抗病毒效应和促进病毒蜱源感染中具有重要作用.本文对当前的ASFV多基因家族研究进展进行总结,阐述其在基因变异和病毒感染中的作用,以期为非洲猪瘟免疫逃逸机制的探索和疫苗的研发提供理论依据.  相似文献   

14.
African swine fever (ASF) virus is a large DNA virus that shares the striking icosahedral symmetry of iridoviruses and the genomic organization of poxviruses. Both groups of viruses have a complex envelope structure. In this study, the mechanism of formation of the inner envelope of ASF virus was investigated. Examination of thin cryosections by electron microscopy showed two internal membranes in mature intracellular virions and all structural intermediates. These membranes were in continuity with intracellular membrane compartments, suggesting that the virus gained two membranes from intracellular membrane cisternae. Immunogold electron microscopy showed the viral structural protein p17 and resident membrane proteins of the endoplasmic reticulum (ER) within virus assembly sites, virus assembly intermediates, and mature virions. Resident ER proteins were also detected by Western blotting of isolated virions. The data suggested the ASF virus was wrapped by the ER. Analysis of the published sequence of ASF virus (R. J. Yanez et al., Virology 208:249–278, 1995) revealed a reading frame, XP124L, that encoded a protein predicted to translocate into the lumen of the ER. Pulse-chase immunoprecipitation and glycosylation analysis of pXP124L, the product of the XP124L gene, showed that pXP124L was retained in the ER lumen after synthesis. When analyzed by immunogold electron microscopy, pXP124L localized to virus assembly intermediates and fully assembled virions. Western blot analysis detected pXP124L in virions isolated from Percoll gradients. The packaging of pXP124L from the lumen of the ER into the virion is consistent with ASF virus being wrapped by ER cisternae: a mechanism which explains the presence of two membranes in the viral envelope.African swine fever (ASF) virus is a large icosahedral enveloped DNA virus that causes a lethal hemorrhagic disease in domestic pigs. The virus is endemic in areas of southern Europe and in Africa where it causes major problems for the development of pig industries. At present there are no vaccines, and the disease is controlled through the slaughter of infected animals. The economic importance of ASF virus has made the virus the focus of much research since it was first described in 1921 (32). ASF virus is unique among animal viruses, and its classification has been controversial. ASF virus shares the striking icosahedral symmetry of iridoviruses (5, 8, 13, 34), while the presence of inverted terminal repeats and covalently linked ends in the 170-kDa genome suggests similarities with poxviruses (16). The ASF virus genome encoding at least 150 proteins has been sequenced (17, 51), and the amino acid sequences of at least 11 structural proteins are known. p73 is the major structural protein (14, 28) and has sequence similarities to the capsid protein of iridoviruses (39). The ordered proteolysis of pp220 produces p150, p37/p34 and p14 (40), which together comprise 25% of the viral proteins (3). These proteins localize to the interior of the virion (3). Three proteins, J13L/p54, I1L/p17, and p22, with membrane-spanning domains localize to the viral envelope (10, 37, 41, 43). Three other structural proteins, p14.5 encoded by E120R (30), p10 encoded by K78R (35), and p5AR encoded by A104R (7), have DNA-binding properties (51) and may be involved in DNA packaging. The virus has been the subject of several detailed electron microscopy studies (24, 8, 9, 11, 13, 34, 47). Electron micrographs of sections taken through ASF virus assembly sites reveal fully assembled virions as 200-nm hexagons and an ordered series of assembly intermediates with one to six sides of a hexagon. Close inspection of intracellular virions identifies multiple concentric layers of differing electron densities. According to recent models, the layers represent a central electron-dense nucleocapsid core, surrounded by an inner core shell, an inner envelope, and an outer capsid layer (3). The mechanism of formation of the inner envelope of ASF virus has not been resolved.Most viruses gain a single membrane envelope by budding into intracellular membrane compartments or from the plasma membrane, as reviewed in reference 21. When viruses bud into an intracellular compartment, the domains of the membrane proteins that are initially located in the lumen of membrane compartments are exposed on the outside of the virion after release from the cell (Fig. (Fig.1a).1a). A second mechanism of envelopment, described recently for poxviruses and herpesviruses (18, 20, 24, 38, 42, 46, 50), is more complex and involves the wrapping of virions by membrane cisternae derived from specific membrane compartments. Wrapping provides two membrane envelopes in one step and leaves the virion free in the cytoplasm. When compared with budding, wrapping reverses the orientation of membrane proteins within the virus such that the domains of membrane proteins located in the lumen of the wrapping organelle are confined to the interior of the virus after release from the cell, whereas cytoplasmic tails are exposed on the outside of the virus (Fig. (Fig.1b).1b). Given these important consequences for understanding the mechanism of assembly of the virus and for determining the final orientation of membrane proteins in virions, we have set out to determine whether ASF virus acquires its membranes by the conventional budding mechanism or whether the virus is wrapped by intracellular membrane compartments before release from the cell. Open in a separate windowFIG. 1Schematic comparison of budding and wrapping mechanisms of virus envelopment. (a) Budding. Viral nucleoprotein complexes bind to the cytoplasmic domains of virally encoded integral membrane proteins (|, membrane glycoproteins). Interactions between viral proteins lead to membrane curvature, and the virion gains a single membrane by budding into the lumen of the membrane compartment. When the virion is released from the cell, oligosaccharides () are exposed on the surface of the virus, and the cytoplasmic tail of the membrane glycoprotein is buried within the virion. (b) Wrapping. Viral nucleoprotein complexes bind to the cytoplasmic domains of virally encoded integral membrane proteins. The nucleoprotein complex is then wrapped by the membrane cisternae, and the virus gains two membranes. The particle remains in the cytosol. When the virion is released from the cell by cell lysis, oligosaccharides () are buried within the two membranes of the virion while the cytoplasmic tail of the membrane glycoprotein is exposed on the surface of the virus.In this study we have taken advantage of thin cryoelectron microscopic sections to enhance the definition of viral membranes. The micrographs show two membranes within mature intracellular virions and all structural intermediates. They also show assembly intermediates in continuity with cellular membrane compartments. Consistent with our earlier study showing that p73 was enveloped by the endoplasmic reticulum (ER) (15), immunogold labelling experiments show resident proteins of the ER within membranes found at assembly sites, in virus assembly intermediates, and in mature virions. Importantly, we have identified a protein (pXP124L) encoded by ASF virus that translocates completely into the lumen of the ER and is incorporated as a structural protein of the virus. The presence of two membranes within intracellular virions and structural intermediates and the packaging of a structural protein from the lumen of the ER into the virus, strongly suggest that ASF virus is wrapped by the ER.  相似文献   

15.
African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na+/H+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.  相似文献   

16.
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种致死率可高达100%的猪烈性传染病。ASF的传播方式复杂多样,目前无商品化疫苗可用,仅能依靠检疫结合扑杀进行防控,严重威胁全球养猪及相关行业的健康发展。阻碍ASF疫苗研发的主要因素是ASFV的基因型众多、结构复杂,以及对ASFV致病和免疫逃逸机制的认识不足。本文从基因组学、转录组学、蛋白质组学和代谢组学等层面多角度综述ASFV的生物学特性及其致病和免疫逃逸机制,以期揭开ASF这个"杀手"的神秘面纱,为ASFV的致病机制研究和ASF的防控提供参考。  相似文献   

17.
Russian Journal of Bioorganic Chemistry - Antiviral activity of antisense oligodeoxyribonucleotides with phosphorothioate or mesyl phosphoramidate internucleotidic groups targeting the main capsid...  相似文献   

18.
There is presently no vaccine to combat African swine fever (ASF), a viral hemorrhagic fever of domestic pigs that causes up to 100% morbidity and mortality in naive, commercial pig populations. In its endemic setting, ASF virus cycles between asymptomatic warthogs and soft ticks, with persistence in exotic locations being ascribed to the almost global distribution of susceptible soft tick and suid hosts. An understanding of the role played by diverse hosts in the epidemiology of this multi-host disease is crucial for effective disease control. Unlike the intensively studied Ornithodoros tick vector, the role of many wild suids remains obscure, despite growing recognition for suid-exclusive virus cycling, without the agency of the argasid tick, at some localities. Because the four wild suid genera, Phacochoerus, Potamochoerus, Hylochoerus, and Sus differ from each other in taxonomy, distribution, ecology, reservoir host potential, virus shedding, ASF symptomology, and domestic-pig contact potential, their role in disease epidemiology is also varied. This first consolidated summary of ASF epidemiology in relation to wild suids summarizes current knowledge and identifies information gaps and future research priorities crucial for formulating effective disease control strategies.  相似文献   

19.
An African swine fever virus (ASFV) gene with similarity to the T-lymphocyte surface antigen CD2 has been found in the pathogenic African isolate Malawi Lil-20/1 (open reading frame [ORF] 8-DR) and a cell culture-adapted European virus, BA71V (ORF EP402R) and has been shown to be responsible for the hemadsorption phenomenon observed for ASFV-infected cells. The structural and functional similarities of the ASFV gene product to CD2, a cellular protein involved in cell-cell adhesion and T-cell-mediated immune responses, suggested a possible role for this gene in tissue tropism and/or immune evasion in the swine host. In this study, we constructed an ASFV 8-DR gene deletion mutant (Δ8-DR) and its revertant (8-DR.R) from the Malawi Lil-20/1 isolate to examine gene function in vivo. In vitro, Δ8-DR, 8-DR.R, and the parental virus exhibited indistinguishable growth characteristics on primary porcine macrophage cell cultures. In vivo, 8-DR had no obvious effect on viral virulence in domestic pigs; disease onset, disease course, and mortality were similar for the mutant Δ8-DR, its revertant 8-DR.R, and the parental virus. Altered viral infection was, however, observed for pigs infected with Δ8-DR. A delay in spread to and/or replication of Δ8-DR in the draining lymph node, a delay in generalization of infection, and a 100- to 1,000-fold reduction in virus titers in lymphoid tissue and bone marrow were observed. Onset of viremia for Δ8-DR-infected animals was significantly delayed (by 2 to 5 days), and mean viremia titers were reduced approximately 10,000-fold at 5 days postinfection and 30- to 100-fold at later times; moreover, unlike in 8-DR.R-infected animals, the viremia was no longer predominantly erythrocyte associated but rather was equally distributed among erythrocyte, leukocyte, and plasma fractions. Mitogen-dependent lymphocyte proliferation of swine peripheral blood mononuclear cells in vitro was reduced by 90 to 95% following infection with 8-DR.R but remained unaltered following infection with Δ8-DR, suggesting that 8-DR has immunosuppressive activity in vitro. Together, these results suggest an immunosuppressive role for 8-DR in the swine host which facilitates early events in viral infection. This may be of most significance for ASFV infection of its highly adapted natural host, the warthog.  相似文献   

20.
非洲猪瘟因其高死亡率、没有疫苗防疫、影响国际贸易而备受广泛关注。1921年首次确认非洲猪瘟疫情以来,先后在非洲、欧洲、美洲等多个国家和地区发病造成重大经济损失。野猪作为该病传播的重要生物媒介在俄罗斯等多个国家非洲猪瘟疫情散播中发挥了重要作用。充分了解全球非洲猪瘟疫情状况和野猪在俄罗斯非洲猪瘟疫情中的影响,分析我国野猪分布、疫病监测和管理现状,将为我国非洲猪瘟外来疫情防控策略制定提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号