首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney proximal tubule, where it cleaves angiotensin (Ang) II to Ang-(1-7). Urinary ACE2 levels increase in diabetes, suggesting that ACE2 may be shed from tubular cells. The aim of this study was to determine if ACE2 is shed from proximal tubular cells, to characterize ACE2 fragments, and to study pathways for shedding. Studies involved primary cultures of mouse proximal tubular cells, with ACE2 activity measured using a synthetic substrate, and analysis of ACE2 fragments by immunoblots and mass spectrometry. The culture media from mouse proximal tubular cells demonstrated a time-dependent increase in ACE2 activity, suggesting constitutive ACE2 shedding. ACE2 was detected in media as two bands at ∼90 kDa and ∼70 kDa on immunoblots. By contrast, full-length ACE2 appeared at ∼100 kDa in cell lysates or mouse kidney cortex. Mass spectrometry of the two deglycosylated fragments identified peptides matching mouse ACE2 at positions 18-706 and 18-577, respectively. The C-terminus of the 18-706 peptide fragment contained a non-tryptic site, suggesting that Met706 is a candidate ACE2 cleavage site. Incubation of cells in high D-glucose (25 mM) (and to a lesser extent Ang II) for 48–72 h increased ACE2 activity in the media (p<0.001), an effect blocked by inhibition of a disintegrin and metalloproteinase (ADAM)17. High D-glucose increased ADAM17 activity in cell lysates (p<0.05). These data indicate that two glycosylated ACE2 fragments are constitutively shed from mouse proximal tubular cells. ACE2 shedding is stimulated by high D-glucose, at least partly via an ADAM17-mediated pathway. The results suggest that proximal tubular shedding of ACE2 may increase in diabetes, which could enhance degradation of Ang II in the tubular lumen, and increase levels of Ang-(1-7).  相似文献   

2.
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.  相似文献   

3.
α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context.  相似文献   

4.
Matriptase-2 is a hepatic membrane serine protease that regulates iron homeostasis. Defects in matriptase-2 cause iron deficiency anemia. In cells, matriptase-2 is synthesized as a zymogen. To date, how matriptase-2 expression and activation are regulated remains poorly understood. Here we expressed human matriptase-2 in HEK293 and hepatic BEL-7402, SMMC-7721, and QGY-7703 cells. By labeling cell surface proteins and Western analysis, we examined matriptase-2 cell surface expression, zymogen activation, and ectodomain shedding. Our results show that matriptase-2 was activated on the cell surface but not intracellularly. Activated matriptase-2 underwent ectodomain shedding, producing soluble fragments in the conditioned medium. By testing inactive mutants, R576A and S762A, we found that matriptase-2 activation and shedding were mediated by its own catalytic activity and that the one-chain form of matriptase-2 had little activity in ectodomain shedding. We made additional matriptase-2 mutants, N136Q, N184Q, N216Q, N338Q, N433Q, N453Q, and N518Q, in which each of the predicted N-glycosylation sites was mutated. All of these mutants were expressed on the cell surface. However, mutants N216Q, N453Q, and N518Q, but not the other mutants, had impaired zymogen activation and ectodomain shedding. Our results indicate that N-glycans at specific sites are critical for matriptase-2 activation. Together, these data provide new insights into the cell surface expression, zymogen activation, and ectodomain shedding of matriptase-2.  相似文献   

5.
CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a structurally related receptor (CD200R) expressed on rodent myeloid cells and is involved in regulation of macrophage function. We report the first characterization of human CD200R (hCD200R) and define its binding characteristics to hCD200. We also report the identification of a closely related gene to hCD200R, designated hCD200RLa, and four mouse CD200R-related genes (termed mCD200RLa-d). CD200, CD200R, and CD200R-related genes were closely linked in humans and mice, suggesting that these genes arose by gene duplication. The distributions of the receptor genes were determined by quantitative RT-PCR, and protein expression was confirmed by a set of novel mAbs. The distribution of mouse and human CD200R was similar, with strongest labeling of macrophages and neutrophils, but also other leukocytes, including monocytes, mast cells, and T lymphocytes. Two mCD200 receptor-like family members, designated mCD200RLa and mCD200RLb, were shown to pair with the activatory adaptor protein, DAP12, suggesting that these receptors would transmit strong activating signals in contrast to the apparent inhibitory signal delivered by triggering the CD200R. Despite substantial sequence homology with mCD200R, mCD200RLa and mCD200RLb did not bind mCD200, and presently have unknown ligands. The CD200 receptor gene family resembles the signal regulatory proteins and killer Ig-related receptors in having receptor family members with potential activatory and inhibitory functions that may play important roles in immune regulation and balance. Because manipulation of the CD200-CD200R interaction affects the outcome of rodent disease models, targeting of this pathway may have therapeutic utility.  相似文献   

6.
7.
The membrane PTK7 pseudokinase, a component of both the canonical and noncanonical/planar cell polarity Wnt pathways, modulates cell polarity and motility in biological processes as diverse as embryo development and cancer cell invasion. To determine the individual proteolytic events and biological significance of the ectodomain shedding in the PTK7 function, we used highly invasive fibrosarcoma HT1080 cells as a model system. Current evidence suggested a likely link between PTK7 shedding and cell invasion in our HT1080 cell model system. We also demonstrated that in HT1080 cells the cleavage of the PTK7 ectodomain by an ADAM proteinase was coupled with the membrane type-1 matrix metalloproteinase (MT1-MMP) cleavage of the PKP621↓LI site in the seventh Ig-like domain of PTK7. Proteolytic cleavages led to the generation of two soluble, N-terminal and two matching C-terminal, cell-associated fragments of PTK7. This proteolysis was a prerequisite for the intramembrane cleavage of the C-terminal fragments of PTK7 by γ-secretase. γ-Secretase cleavage was predominantly followed by the efficient decay of the resulting C-terminal PTK7 fragment via the proteasome. In contrast, in HT1080 cells, which overexpressed the C-terminal PTK7 fragment, the latter readily entered the nucleus. Our data imply that therapeutic inhibition of PTK7 shedding may be used to slow cancer progression.  相似文献   

8.
The cellular prion protein (PrPC) is essential for the pathogenesis and transmission of prion diseases. PrPC is bound to the plasma membrane via a glycosylphosphatidylinositol anchor, although a secreted, soluble form has also been identified. Previously we reported that PrPC is subject to ectodomain shedding from the membrane by zinc metalloproteinases with a similar inhibition profile to those involved in shedding the amyloid precursor protein. Here we have used gain-of-function (overexpression) and loss-of-function (small interfering RNA knockdown) experiments in cells to identify the ADAMs (a disintegrin and metalloproteinases) involved in the ectodomain shedding of PrPC. These experiments revealed that ADAM9 and ADAM10, but not ADAM17, are involved in the shedding of PrPC and that ADAM9 exerts its effect on PrPC shedding via ADAM10. Using dominant negative, catalytically inactive mutants, we show that the catalytic activity of ADAM9 is required for its effect on ADAM10. Mass spectrometric analysis revealed that ADAM10, but not ADAM9, cleaved PrP between Gly228 and Arg229, three residues away from the site of glycosylphosphatidylinositol anchor attachment. The shedding of another membrane protein, the amyloid precursor protein β-secretase BACE1, by ADAM9 is also mediated via ADAM10. Furthermore, we show that pharmacological inhibition of PrPC shedding or activation of both PrPC and PrPSc shedding by ADAM10 overexpression in scrapie-infected neuroblastoma N2a cells does not alter the formation of proteinase K-resistant PrPSc. Collectively, these data indicate that although PrPC can be shed through the action of ADAM family members, modulation of PrPC or PrPSc ectodomain shedding does not regulate prion conversion.The prion protein (PrP)3 is the causative agent of the transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, bovine spongiform encephalopathy in cattle, and chronic wasting disease in deer and elk (1). In these diseases the cellular form of PrP (PrPC) undergoes a conformational conversion to the infectious form PrPSc that is characterized biochemically by its resistance to digestion with proteinase K (PK) (2). Mature PrPC is anchored to the extracellular surface of the cell membrane through a glycosylphosphatidylinositol (GPI) anchor and, like most GPI-anchored proteins, is clustered into cholesterol-rich, detergent-resistant membrane rafts (reviewed in Ref. 3). Although the precise subcellular site of conversion remains undefined, conformational conversion of PrPC to PrPSc is believed to occur either at the cell surface or within the endocytic pathway (46).A number of studies indicate that modulation of PrPC levels at the cell surface may represent a possible future disease intervention strategy. For example, the retention of PrPC at the cell surface and concomitant prevention of its endocytosis through the use of PrP antibodies inhibited PrPSc formation (7). Furthermore, the sterol-binding polyene antibiotic filipin reduced endocytosis, and induced cellular release, of PrPC with a concomitant reduction in PrPSc accumulation (8). More recently, it has been shown that modulation of cell surface PrPC levels by the novel sorting nexin SNX33 can interfere with PrPSc formation in cultured cells (9). Nonetheless, the natural processes regulating PrPC levels at the cell surface remain poorly defined. One such mechanism of regulation is via shedding of the bulk of the ectodomain of PrPC either through cleavage of the polypeptide close to the GPI anchor or within the GPI anchor itself. Indeed, it has long been established that PrPC can be shed into the medium of cultured cells and is present as a soluble form in vivo in human cerebrospinal fluid (10, 11).Numerous cell surface proteins can be proteolytically shed by the action of a group of zinc metalloproteinases known collectively as secretases or sheddases (reviewed in Refs. 12, 13). Whereas most proteolytically shed proteins are derived from transmembrane polypeptide-anchored substrates, several GPI-anchored proteins, including the folate receptor (14), the ecto-ADP-ribosyltransferase ART2.2 (15), and a GPI-anchored construct of angiotensin-converting enzyme (16) are shed by the action of metalloproteinases. We have previously shown that PrPC can also be proteolytically shed from the cell surface through the action of one or more zinc metalloproteinases with similar properties to those of the α-secretases responsible for the shedding of the amyloid precursor protein (APP) of Alzheimer disease (17). This α-secretase-mediated ectodomain shedding of APP from the cell surface is carried out by at least three members of the a disintegrin and metalloproteinase (ADAM) family, namely ADAM9, -10, and -17 (reviewed in Ref. 18). In addition to cleavage by ADAMs, APP is also cleaved by the β-secretase, BACE1 (β-site APP-cleaving enzyme) and the γ-secretase complex to release the neurotoxic amyloid-β peptide (19). BACE1 itself is also subject to ectodomain shedding by as yet unidentified members of the ADAM family (20).The similarities between the ectodomain shedding of APP and PrPC, in particular the similar profile of inhibition by a range of hydroxamate-based zinc metalloproteinase inhibitors (17), led us to investigate whether the same members of the ADAM family were also involved in the shedding of PrPC. It should be noted that this ectodomain shedding of PrPC by cleavage of the polypeptide chain near to the site (Ser231) of GPI anchor addition in the C terminus of the protein is distinct from the so-called α-cleavage between residues 111 and 112 in the middle of the protein (21, 22). This latter “endoproteolytic” cleavage of PrPC is reported to be carried out by members of the ADAM family (23, 24).To investigate the role of ADAMs in the ectodomain shedding of PrPC, we used loss-of-function and gain-of-function experiments in cultured cells in which candidate PrP sheddases were either knocked down by siRNA or overexpressed. We have also further characterized the shedding of BACE1 by comparison to the shedding of APP and PrPC. In addition, we have explored whether proteolytic shedding of PrPC is of importance in regulating its conversion into PrPSc.  相似文献   

9.
Lectin-like molecules and their receptors are cell surface molecules that have been shown to play a role in either facilitating infection or serving as transporters of HIV/SIV in vivo. The role of these lectin-like molecules in the pathogenesis of HIV/SIV infection continues to be defined. In efforts to gain further insight on the potential role of these lectin-like molecules, our laboratory generated monoclonal antibodies (mAb) against the human analogs of rhesus macaque CD200, CD200R and Mincle, since the rhesus macaques are accepted as the most reliable animal model to study human HIV infection. The characterization of the cell lineages from the blood and various tissues of rhesus macaques that express these lectin-like molecules are described herein. Among the mononuclear cells, the cells of the myeloid lineage of rhesus macaques are the predominant cell lineages that express readily detectable levels of CD200, CD200R and Mincle that is similar to the expression of Siglec-1 and Siglec-3 reported by our laboratory earlier. Subset analysis revealed that a higher frequency of the CD14+/CD16- subset from normal rhesus macaques express CD200, CD200R and Mincle. Differences in the frequencies and density of expression of these molecules by the gated population of CD14+ cells from various tissues are noted with PBMC and bone marrow expressing the highest and the mononuclear cells isolated from the colon and ileum expressing the lowest levels. While a significant frequency of pDCs and mDCs express Siglec-1/Siglec-3, a much lower frequency expresses CD200, CD200R and Mincle in PBMCs from rhesus macaques. The mAb against CD200 and CD200R but not Mincle appear to inhibit the infection of macrophage tropic SIV/SHIV in vitro. We conclude that these mAbs may have potential to be used as adjunctive therapeutic agents to control/inhibit SIV/HIV infection.  相似文献   

10.
We recently documented the co-purification of members of the LIV-1 subfamily of ZIP (Zrt-, Irt-like Protein) zinc transporters (LZTs) with the cellular prion protein (PrP(C)) and, subsequently, established that the prion gene family descended from an ancestral LZT gene. Here, we begin to address whether the study of LZTs can shed light on the biology of prion proteins in health and disease. Starting from an observation of an abnormal LZT immunoreactive band in prion-infected mice, subsequent cell biological analyses uncovered a surprisingly coordinated biology of ZIP10 (an LZT member) and prion proteins that involves alterations to N-glycosylation and endoproteolysis in response to manipulations to the extracellular divalent cation milieu. Starving cells of manganese or zinc, but not copper, causes shedding of the N1 fragment of PrP(C) and of the ectodomain of ZIP10. For ZIP10, this posttranslational biology is influenced by an interaction between its PrP-like ectodomain and a conserved metal coordination site within its C-terminal multi-spanning transmembrane domain. The transition metal starvation-induced cleavage of ZIP10 can be differentiated by an immature N-glycosylation signature from a constitutive cleavage targeting the same site. Data from this work provide a first glimpse into a hitherto neglected molecular biology that ties PrP to its LZT cousins and suggest that manganese or zinc starvation may contribute to the etiology of prion disease in mice.  相似文献   

11.
Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.  相似文献   

12.
13.
Toll-like receptor (TLR) 2, a type I membrane receptor that plays a key role in innate immunity, recognizes conserved molecules in pathogens, and triggering an inflammatory response. It has been associated with inflammatory and autoimmune diseases. Soluble TLR2 (sTLR2) variants have been identified in human body fluids, and the TLR2 ectodomain can negatively regulate TLR2 activation by behaving as a decoy receptor. sTLR2 generation does not involve alternative splicing mechanisms, indicating that this process might involve a post-translational modification of the full-length receptor; however, the specific mechanism has not been studied. Using CD14+ peripheral human monocytes and the THP-1 monocytic leukemia-derived cell line, we confirm that sTLR2 generation increases upon treatment with pro-inflammatory agents and requires a post-translational mechanism. We also find that the constitutive and ligand-induced release of sTLR2 is sensitive to pharmacological metalloproteinase activator and inhibitors leading us to conclude that metalloproteinase TLR2 shedding contributes to soluble receptor production. By expressing human TLR2 in ADAM10- or ADAM17-deficient MEF cells, we find both enzymes to be implicated in TLR2 ectodomain shedding. Moreover, using a deletion mutant of the TLR2 juxtamembrane region, we demonstrate that this domain is required for sTLR2 generation. Functional analysis suggests that sTLR2 generated by metalloproteinase activation inhibitsTLR2-induced cytokine production by this monocytic leukemia-derived cell line. The identification of the mechanisms involved in regulating the availability of soluble TLR2 ectodomain and cell surface receptors may contribute further research on TLR2-mediated processes in innate immunity and inflammatory disorders.  相似文献   

14.
15.
The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates’ ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.  相似文献   

16.
Human and rodent CD200 are recognized by the inhibitory CD200R, and these molecules play an important role in the regulation of the immune system. Several viruses, such as human herpesvirus-6 (HHV-6), HHV-7, and HHV-8, possess a CD200 homologue, suggesting that these viruses regulate the immune response via CD200R. In this study, we analyzed the effect of human CD200 and the viral CD200 homologues on human CD200R-expressing cells. We found that human CD200R is predominantly expressed on basophils in amounts higher than on other human peripheral blood leukocytes. Furthermore, the viral CD200 homologues as well as human CD200 were recognized by human CD200R, and the activation of basophils was down-regulated by these CD200 proteins. These results suggested that CD200R is an important regulatory molecule of basophil activation. In addition, the presence of CD200 homologues on several viruses suggests a potentially unique relationship between basophil function and viral infection.  相似文献   

17.
Mitochondrial ATP synthase (F1Fo-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, cDNA coding the human homolog of the inhibitor protein was isolated and sequenced. The deduced protein sequence shows that the protein was composed of 106 amino acids and had a molecular weight of 12248. The structural features of the protein show that the cDNA isolated in this study codes the human ATPase inhibitor.  相似文献   

18.
CD200 (OX2) is a cell surface glycoprotein that interacts with a structurally related receptor (CD200R) expressed mainly on myeloid cells and is involved in regulation of macrophage and mast cell function. In mouse there are up to five genes related to CD200R with conflicting data as to whether they bind CD200. We show that mouse CD200 binds the inhibitory receptor CD200R with a comparable affinity (Kd = 4 microM) to those found for the rat and human CD200 CD200R interactions. CD200 gave negligible binding to the activating receptors, CD200RLa, CD200RLb, and CD200RLc, by direct analysis at the protein level using recombinant monomeric and dimeric fusion proteins or to CD200RLa and CD200RLb when expressed at the cell surface. An additional potential activating gene, CD200RLe, found in only some mouse strains also did not bind CD200. Thus, the CD200 receptor family consists of both activatory and inhibitory members like several other paired ligand receptors, such as signal regulatory protein, killer cell Ig-like receptor/KAR, LY49, dendritic cell immunoreceptor/dendritic cell immunoactivating receptor, and paired Ig-like type 2 receptor. Although the ligand for the inhibitory product is a widely distributed host protein, the ligands of the activating forms remain to be identified, and one possibility is that they are pathogen components.  相似文献   

19.
CD200Fc, a chimeric molecule including the extracellular domain of CD200 and a murine IgG2a Fc region, regulates immune responses following engagement of a cell surface receptor, CD200R, expressed on cells of the myeloid and T cell lineage. A recent report focused attention on a family of CD200Rs, but concluded that only one member used CD200 as its ligand. We have also cloned and sequenced a family of CD200Rs, but identify an amino terminus to two of the three isoforms not recognized by previous researchers. We show by FACS, using FITC-labeled CD200Fc, that COS7 cells transfected with all CD200R isoforms bind CD200 as ligand, although the functional consequences of this binding likely differs between the different isoforms. mAbs directed against the CD200 R1/R4 isoforms altered IL-2/IL-4 cytokine production and suppressed CTL responses in a fashion comparable to CD200Fc, with a significantly lesser effect seen following addition of anti-CD200 R2/R3.  相似文献   

20.
Many viral proteins limit host immune defenses, and their genes often originate from their hosts. CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a receptor on myeloid cells (CD200R) that is implicated in locally preventing macrophage activation. Distant, but recognizable, homologues of CD200 have been identified in many herpesviruses and poxviruses. Here, we show that the product of the K14 open reading frame from human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) interacts with human CD200R and is expressed at the surfaces of infected cells solely during the lytic cycle. Despite sharing only 40% primary sequence identity, K14 and CD200 interacted with CD200R with an almost identical and low affinity (K(D) = 0.5 microM), in contrast to other characterized viral homologue interactions. Cells expressing CD200 or K14 on the cell surface were able to inhibit secretion by activated macrophages of proinflammatory cytokines such as tumor necrosis factor alpha, an effect that could be specifically relieved by addition of monoclonal antibodies and soluble monomeric CD200 protein. We conclude that CD200 delivers local down-modulatory signals to myeloid cells through direct cell-cell contact and that the K14 viral homologue closely mimics this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号