首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of loading (displacement) rate on the tensile mechanics of cervical spine functional spinal units. A total of 40 isolated functional spinal units (two vertebrae and the adjoining soft tissues) from juvenile male baboons (10+/-0.6-human equivalent years old) were subjected to tensile loading spanning four orders of magnitude from 0.5 to 5000 mm/s. The stiffness, ultimate failure load, and corresponding displacement at failure were measured for each specimen and normalized by spinal geometry to examine the material properties as well as the structural properties. The tensile stiffness, failure load, normalized stiffness, and normalized failure load significantly increased (ANOVA, p<0.001) with increasing displacement rate. From the slowest to fastest loading rate, a two-fold increase in stiffness and four-fold increase in failure load were observed. The tensile failure strains (1.07+/-0.31 mm/mm strain) were not significantly correlated with loading rate (ANOVA, p=0.146). Both the functional (non-destructive stiffness and normalized stiffness) and failure mechanics of isolated functional spinal units exhibited a power-law relationship with displacement rate. Modeling efforts utilizing these rate-dependent characteristics will enhance our understanding of the tensile viscoelastic response of the spine and enable improved dynamic injury prevention schemes.  相似文献   

2.
Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with constants derived from quasi-static experiments showed a failure energy (13.2 J) and a fracture pattern and location in agreement with experimental results, but a compressive stiffness (1580 N/mm), a failure load (5976 N) and a displacement to failure (4.8 mm) outside the experimental corridors. The proposed method offers an innovative way to calibrate the hyperelastic material properties of the IVD and to offer a more realistic simulation of the FSU in fast dynamic compression.  相似文献   

3.
Thirty-four cervical spine segments were harvested from 12 juvenile male baboons and compressed to failure at displacement rates of 5, 50, 500, or 5000 mm/s. Compressive stiffness, failure load, and failure displacement were measured for comparison across loading rate groups. Stiffness showed a significant concomitant increase with loading rate, increasing by 62% between rates of 5 and 5000 mm/s. Failure load also demonstrated an increasing relationship with loading rate, while displacement at failure showed no rate dependence. These data may help in the development of improved pediatric automotive safety standards and more biofidelic physical and computational models.  相似文献   

4.
Understanding proximal femur fracture may yield new targets for fracture prevention screening and treatment. The goal of this study was to characterize force–displacement and failure behaviours in the proximal femur between displacement control and impact loading fall simulations. Twenty-one human proximal femurs were tested in two ways, first to a sub-failure load at a constant displacement rate, then to fracture in an impact fall simulator. Comparisons of sub-failure energy and stiffness were made between the tests at the same compressive force. Additionally, the impact failure tests were compared with previous, constant displacement rate failure tests (at 2 and 100 mm/s) in terms of energy, yield force, and stiffness. Loading and displacement rates were characterized and related to specimen stiffness in the impact tests. No differences were observed between the sub-failure constant displacement and impact tests in the aforementioned metrics. Comparisons between failure tests showed that the impact group had the lowest absorbed energy, 24% lower maximum force and 160% higher stiffness than the 100 mm/s group (p<0.01p<0.01 for all), but suffered from low statistical power to differentiate the donor age and specimen BMD. Loading and displacement rates for the specimens tested using impact varied during each test and between specimens and did not show appreciable viscoelasticity. These results indicate that constant displacement rate testing may help understand sub-failure mechanical behaviour, but may not elucidate failure behaviours. The differences between the impact and constant displacement rate fall simulations have important ramifications for interpreting the results of previous experiments.  相似文献   

5.
An understanding of the biomechanical and physiological properties of spinal nerve roots, particularly in response to tension, is critical in understanding the pathomechanisms of pain and nerve root injury and subsequent management of related injuries. Biomechanical properties of dorsal nerve roots at the lumbar and sacral levels were evaluated at various strain rates. Nerve roots were stretched at two different rates, 0.01 mm/s (Group A, quasistatic) and 15 mm/s (Group B, dynamic). Load, displacement and digital video data were obtained as the nerve roots were stretched until failure. Maximum stress, strain at maximum stress and modulus of elasticity (E) were calculated from the load-displacement measurements. Comparison of mechanical properties and failure patterns of nerve roots at two different rates revealed significant differences. Maximum load, maximum stress and E values of 5.7+/-2.7 gm, 257.9+/-111.3 kPa and 1.3+/-0.8 MPa were observed for Group A and 13.9+/-7.5 gm, 624.9+/-306.8 kPa and 2.9+/-1.5 MPa were observed for Group B, respectively. Higher maximum load, maximum stress and E values occurred at the dynamic stretch rate as compared to the quasistatic stretch rate, illustrating the strain-rate dependency of spinal nerve roots. No differences were observed in the strain values. Differences in mechanical behavior of nerve roots were also observed among the four root levels (L4-S1). A significant interaction effect was observed between nerve root diameter and stretch rates. Overall, results from the present study demonstrate viscoelastic material properties of spinal nerve roots and provide better insight on the tensile properties of nerve roots at different strain rates.  相似文献   

6.
Multiple osteochondral grafts can be used to resurface large joint defects in both humans and horses. In humans, immediate postoperative weight bearing can be prevented, however in the equine, it is unavoidable. Early weight bearing can create detrimental graft micromotion. The aim of this study was to investigate the role of a bioresorbable cement in improving the initial stability of multiple osteochondral graft repairs of large subchondral cystic lesions in the horse. Configurations employed for filling a 20mm diameter cylindrical defect included: (A) twelve 4.5mm diameter grafts with cement, (B) five 6.5mm diameter grafts with cement, (C) four each of 4.5mm and 6.5mm grafts with cement and (D) cement only. Intact bone slices (E) were also tested. Push-out tests were used to quantify construct to host sidewall interface fixation. Configuration (A) proved clinically impractical (n=3). Configurations (B) (n=6), and (C) (n=4) had statistically similar interface stiffnesses and failure stresses (43+/-8 and 30+/-12 MPa and 0.96+/-0.1 and 1.2+/-0.3 Mpa, respectively) suggesting that they are equally susceptible to interface movement in the immediate postoperative period. By way of comparison, defects filled only with cement had an average stiffness of 53+/-7MPa and failure stress of 1.8+/-0.3 MPa (n=6) while the intact femoral condyle demonstrated a stiffness of 108+/-7 MPa and failure stress of 18+/-0.4 MPa (n=6). Cement augmentation improved immediate postoperative stability of multiple osteochondral graft constructs over uncemented constructs, although in all cases the observed moduli of elasticity and yield stress values were lower than those observed for cement only and intact bone test specimens. (all numbers are mean+/-SEM).  相似文献   

7.
Due to ready availability, decreased cost, and freedom from transmissible diseases in humans such as hepatitis and AIDS, it would be advantageous to use tendon grafts from farm animals as a substitute for human tendon grafts in in vitro experiments aimed at improving the outcome of anterior cruciate ligament (ACL) reconstructive surgery. Thus the objective of this study was to determine whether an anterior cruciate ligament (ACL) graft composed of two loops of bovine common digital extensor tendon has the same viscoelastic, structural, and material properties as a graft composed of a double loop of semitendinosus and gracilis tendons from humans. To satisfy this objective, grafts were constructed from each tissue source. The cross-sectional area was measured using an area micrometer, and each graft was then pulled using a materials testing system while submerged in a saline bath. Using two groups of tendon grafts (n = 10), viscoelastic tests were conducted over a three-day period during which a constant displacement load relaxation test was followed by a constant amplitude, cyclic load creep test (first day), a constant load creep test (second day), and an incremental cyclic load creep test (third day). Load-to-failure tests were performed on two different groups of grafts (n = 8). When the viscoelastic behavior was compared, there were no significant differences in the rate of load decay or the final load (relaxation test) and rates of displacement increase or final displacements (creep tests) (p > 0.115). To compare both the structural and material properties in the toe region (i.e., < 250 N) of the load-elongation curve, the tangent stiffness and modulus functions were computed from parameters used in an exponential model fit to the load (stress)-elongation (strain) data. Although one of the two parameters in the functions was different statistically, this difference translated into a difference of only 0.03 mm in displacement at 250 N of load. In the linear region (i.e., 50-75 percent of ultimate load) of the load-elongation curve, the linear stiffness of the two graft types compared closely (444 N/mm for bovine and 418 N/mm for human) (p = 0.341). At failure, the ultimate loads (2901 N and 2914 N for bovine and human, respectively) and the ultimate stresses (71.8 MPa and 65.6 MPa for bovine and human, respectively) were not significantly different (p > 0.261). The theoretical effect of any differences in properties between these two grafts on the results of two types of in vitro experiments (i.e., effect of surgical variables on knee laxity and structural properties of fixation devices) are discussed. Despite some statistical differences in the properties evaluated, these differences do not translate into important effects on the dependent variables of interest in the experiments. Thus the bovine tendon graft can be substituted for the human tendon graft in both types of experiments.  相似文献   

8.
The effect of loading rate on specimen calibration was investigated for an implantable force sensor of the two-point loading variety. This variety of sensor incorporates a strain gage to measure the compressive load applied to the sensor due to tensile loading in a soft tissue specimen. The Achilles tendon in each of four human cadaveric lower extremities was instrumented with a force sensor and then loaded in tension using a materials testing machine. Each specimen was tensile tested at three different displacement rates, 0.25, 2.5 and 12.7 cm s(-1), corresponding with mean loading rates of 33.8, 513.2, and 2838.6 N s(-1), respectively. A calibration curve relating the force sensor signal and applied tendon tension was generated for each specimen/ displacement rate combination. For each specimen, calibration curves were compared by calculating an RMS error for the entire data set (eRMS = 1.6% of the full load value) and a coefficient of determination, R2, of a curve fit through all of the data (R2 = 99.6%). Over the range of rates tested, no measurable change in sensor sensitivity due to loading rate was observed. Hysteresis for all displacement rates was on the order of 2.4%.  相似文献   

9.
In the mammalian heart the metabolic costs of pressure loading exceed those of volume loading. As evidence suggests that the opposite may be true in fish, we evaluated the metabolic costs of volume and pressure loading in the isolated trout heart and compared the results with the mammalian heart based on the biomechanical properties of cardiac muscle. The highest power output (2.33+/-0.32 mW g(-1), n=5) appeared at the highest preload pressure tested (0.3 kPa) and at an afterload of 5 kPa. At a higher afterload, power did not increase because stroke volume fell. The highest mechanical efficiency (20.7+/-2.0%, n=5) was obtained at a preload of 0.15 kPa and an afterload of 5 kPa. Further increases in preload or afterload did not increase mechanical efficiency, probably because of increases in ventricular wall stress which increased the oxygen consumed disproportionately more than the stroke work. Under pressure unloading (25% decrease in power output), mechanical efficiency was significantly higher in comparison with volume unloading. Given that stiffness of the ventricular tissue is larger in trout than in rat papillary muscles, it is suggested that the increased strain during volume loading is energetically disadvantageous for stiff muscles like those of trout, but it is advantageous when muscle stiffness is lower as it occurs in the rat papillary muscle.  相似文献   

10.
BackgroundAs overall cancer survival continues to improve, the incidence of metastatic lesions to the bone continues to increase. The subsequent skeletal related events that can occur with osseous metastasis can be debilitating. Complete and impending pathologic femur fractures are common with patients often requiring operative fixation. However, the efficacy of an intramedullary nail construct, on providing stability, continue to be debated. Therefore, the purpose of this study was to utilize a synthetic femur model to determine 1) how proximal femur defect size and cortical breach impact femur load to failure (strength) and stiffness, and 2) and how the utilization of an IMN, in a prophylactic fashion, subsequently alters the overall strength and stiffness of the proximal femur.MethodsA total of 21 synthetic femur models were divided into four groups: 1) intact (no defect), 2) 2 cm defect, 3) 2.5 cm defect, and 4) 4 cm defect. An IMN was inserted in half of the femur specimens that had a defect present. This procedure was performed using standard antegrade technique. Specimens were mechanically tested in offset torsion. Force-displacement curves were utilized to determine each constructs load to failure and overall torsional stiffness. The ultimate load to failure and construct stiffness of the synthetic femurs with defects were compared to the intact synthetic femur, while the femurs with the placement of the IMN were directly compared to the synthetic femurs with matching defect size.ResultsThe size of the defect invertedly correlated with the load the failure and overall stiffness. There was no difference in load to failure or overall stiffness when comparing intact models with no defect and the 2 cm defect group (p=0.98, p=0.43). The 2.5 cm, and 4.5 cm defect groups demonstrated significant difference in both load to failure and overall stiffness when compared to intact models with results demonstrating 1313 N (95% CI: 874-1752 N; p<0.001) and 104 N/mm (95% CI: 98-110 N/mm; p=0.03) in the 2.5 cm defect models, and 512 N (95% CI: 390-634 N, p<0.001) and 21 N/mm (95% CI: 9-33 N/mm, p<0.001) in the models with a 4 cm defect. Compared to the groups with defects, the placement an IMN increased overall stiffness in the 2.5 cm defect group (125 N/mm; 95% CI:114-136 N/mm; p=0.003), but not load to failure (p=0.91). In the 4 cm defect group, there was a significant increase in load to failure (1067 N; 95% CI: 835-1300 N; p=0.002) and overall stiffness (57 N/mm; 95% CI:46-69 N/mm; p=0.001).ConclusionProphylactic IMN fixation significantly improved failure load and overall stiffness in the group with the largest cortical defects, but still demonstrated a failure loads less than 50% of the intact model. This investigation suggests that a cortical breach causes a loss of strength that is not completely restored by intramedullary fixation. Level of Evidence: II  相似文献   

11.
Stiffness behaviour of trabecular bone specimens   总被引:3,自引:0,他引:3  
Trabecular bone specimens were tested by non-destructive technique with the purpose of investigating stiffness behaviour and optimizing stiffness determination. Cylindrical specimens (n = 25) were loaded repetitively (0.1 Hz, 30 cycles) by axial compression to 50% of predicted ultimate strength and finally compressed to failure. Analyses of single compression curves showed increasing stiffness (E') until a stress level about 50% of ultimate stress followed by decreasing stiffness. Curve fit analysis of the elastic part of the compression curve showed the best fit, when a second order polynomial was used (r = 0.94, p less than 0.001). The stiffness determined non-destructively at the 25% level of ultimate strength increased significantly to the tenth loading cycle followed by a steady state. The precision of stiffness determination as an average of five consecutive measurements at steady state was E' +/- less than 5% (95% confidence limits). A reproducibility test by repetition of the test sequence after 3 h rest showed qualitatively the same stiffness behaviour. The variation of stiffness determination between the two test sequences was +/- 27% at the first loading cycle falling to +/- 12% at steady state.  相似文献   

12.
The cervical facet joint has been identified as a source of neck pain, and its capsular ligament is a likely candidate for injury during whiplash. Many studies have shown that the mechanical properties of ligaments can be altered by subfailure injury. However, the subfailure mechanical response of the facet capsular ligament has not been well defined, particularly in the context of physiology and pain. Therefore, the goal of this study was to quantify the structural mechanics of the cervical facet capsule and define the threshold for altered structural responses in this ligament during distraction. Tensile failure tests were preformed using isolated C6/C7 rat facet capsular ligaments (n=8); gross ligament failure, the occurrence of minor ruptures and ligament yield were measured. Gross failure occurred at 2.45+/-0.60 N and 0.92+/-0.17 mm. However, the yield point occurred at 1.68+/-0.56 N and 0.57+/-0.08 mm, which was significantly less than gross failure (p<0.001 for both measurements). Maximum principal strain in the capsule at yield was 80+/-24%. Energy to yield was 14.3+/-3.4% of the total energy for a complete tear of the ligament. Ligament yield point occurred at a distraction magnitude in which pain symptoms begin to appear in vivo in the rat. These mechanical findings provide insight into the relationship between gross structural failure and painful loading for the facet capsular ligament, which has not been previously defined for such neck injuries. Findings also present a framework for more in-depth methods to define the threshold for persistent pain and could enable extrapolation to the human response.  相似文献   

13.
Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear displacement was determined by performing regression analysis on the experimental data. The threshold values of the bending angle (16.2 deg) and shear displacement (25.2 mm) estimated from the injury threshold function were in agreement with previously published knee injury threshold data. The continuous knee injury function expressed in terms of bending angle and shear displacement enabled injury prediction for combined loading conditions such as those observed in pedestrian-car collisions.  相似文献   

14.
Clinical, epidemiological, and biomechanical studies suggest the involvement of the cervical facet joint in neck pain. Mechanical studies have suggested the facet capsular ligament to be at risk for subfailure tensile injury during whiplash kinematics of the neck. Ligament mechanical properties can be altered by subfailure injury and such loading can induce cellular damage. However, at present, there is no clear understanding of the physiologic context of subfailure facet capsular ligament injury and mechanical implications for whiplash-related pain. Therefore, this study aimed to define a relationship between mechanical properties at failure and a subfailure condition associated with pain for tension in the rat cervical facet capsular ligament. Tensile failure studies of the C6/C7 rat cervical facet capsular ligament were performed using a customized vertebral distraction device. Force and displacement at failure were measured and stiffness and energy to failure were calculated. Vertebral motions and ligament deformations were tracked and maximum principal strains and their directions were calculated. Mean tensile force at failure (2.96 +/- 0.69 N) was significantly greater (p < 0.005) than force at subfailure (1.17 +/- 0.48 N). Mean ligament stiffness to failure was 0.75 +/- 0.27 N/mm. Maximum principal strain at failure (41.3 +/- 20.0%) was significantly higher (p = 0.003) than the corresponding subfailure value (23.1 +/- 9.3%). This study determined that failure and a subfailure painful condition were significantly different in ligament mechanics and findings provide preliminary insight into the relationship between mechanics and pain physiology for this ligament. Together with existing studies, these findings offer additional considerations for defining mechanical thresholds for painful injuries.  相似文献   

15.
Left ventricular (LV) diastolic dysfunction is a fundamental impairment in congestive heart failure (CHF). This study examined LV diastolic function in the canine model of CHF induced by chronic coronary embolization (CCE). Dogs were implanted with coronary catheters (both left anterior descending and circumflex arteries) for CCE and instrumented for measurement of LV pressure and dimension. Heart failure was elicited by daily intracoronary injections of microspheres (1.2 million, 90- to 120-microm diameter) for 24 +/- 4 days, resulting in significant depression of cardiac systolic function. After CCE, LV maximum negative change of pressure with time (dP/dt(min)) decreased by 25 +/- 2% (P < 0.05) and LV isovolumic relaxation constant and duration increased by 19 +/- 5% and 25 +/- 6%, respectively (both P < 0.05), indicating an impairment of LV active relaxation, which was cardiac preload independent. LV passive viscoelastic properties were evaluated from the LV end-diastolic pressure (EDP)-volume (EDV) relationship (EDP = be(alpha*EDV)) during brief inferior vena caval occlusion and acute volume loading, while the chamber stiffness coefficient (alpha) increased by 62 +/- 10% (P < 0.05) and the stiffness constant (k) increased by 66 +/- 13% after CCE. The regional myocardial diastolic stiffness in LV anterior and posterior walls was increased by 70 +/- 25% and 63 +/- 24% (both P < 0.05), respectively, after CCE, associated with marked fibrosis, increase in collagen I and III, and enhancement of plasminogen activator inhibitor-1 (PAI-1) protein expression. Thus along with depressed LV systolic function there is significant impairment of LV diastolic relaxation and increase in chamber stiffness, with development of myocardial fibrosis and activation of PAI-1, in the canine model of CHF induced by CCE.  相似文献   

16.
Posteroanterior spinal stiffness assessments are common in the evaluating patients with low back pain. The purpose of this study was to determine the effects of mechanical excitation frequency on dynamic lumbar spine stiffness. A computer-controlled voice coil actuator equipped with a load cell and LVDT was used to deliver an oscillatory dorsoventral (DV) mechanical force to the L3 spinous process of 15 adolescent Merino sheep. DV forces (48 N peak, approximately 10% body weight) were randomly applied at periodic excitation frequencies of 2.0, 6.0, 11.7 and a 0.5-19.7 Hz sweep. Force and displacement were recorded over a 13-22 s time interval. The in vivo DV stiffness of the ovine spine was frequency dependent and varied 3.7-fold over the 0.5-19.7 Hz mechanical excitation frequency range. Minimum and maximum DV stiffness (force/displacement) were 3.86+/-0.38 and 14.1+/-9.95 N/mm at 4.0 and 19.7 Hz, respectively. Stiffness values based on the swept-sine measurements were not significantly different from corresponding periodic oscillations (2.0 and 6.0 Hz). The mean coefficient of variation in the swept-sine DV dynamic stiffness assessment method was 15%, which was similar to the periodic oscillation method (10-16%). The results indicate that changes in mechanical excitation frequency and animal body mass modulate DV spinal stiffness.  相似文献   

17.

Introduction

Pectopexy, a laparoscopic method for prolapse surgery, showed promising results in recent literature. Further improving this approach by reducing surgical time may decrease complication rates and patient morbidity. Since laparoscopic suturing is a time consuming task, we propose a single suture /mesh ileo-pectineal ligament fixation as opposed to the commonly used continues approach.

Methods

Evaluation was performed on human non-embalmed, fresh cadaver pelves. A total of 33 trials was performed. Eight female pelves with an average age of 75, were used. This resulted in 16 available ligaments. Recorded parameters were ultimate load, displacement at failure and stiffness.

Results

The ultimate load for the mesh + simplified single “interrupted” suture (MIS) group was 35 (± 12) N and 48 (± 7) N for the mesh + continuous suture (MCS) group. There was no significant difference in the ultimate load between both groups (p> 0.05). This was also true for displacement at failure measured at 37 (± 12) mm and 36 (±5) mm respectively. There was also no significant difference in stiffness and failure modes.

Conclusion

Given the data above we must conclude that a continuous suture is not necessary in laparoscopic mesh / ileo-pectineal ligament fixation during pectopexy. Ultimate load and displacement at failure results clearly indicate that a single suture is not inferior to a continuous approach. The use of two single sutures may improve ligamental fixation. However, overall stability should not benefit since the surgical mesh remains the limiting factor.  相似文献   

18.
Traumatic cervical facet dislocation (CFD) is often associated with devastating spinal cord injury. Facet fractures commonly occur during CFD, yet quantitative measures of facet deflection, strain, stiffness and failure load have not been reported. The aim of this study was to determine the mechanical response of the subaxial cervical facets when loaded in directions thought to be associated with traumatic bilateral CFD – anterior shear and flexion. Thirty-one functional spinal units (6 × C2/3, C3/4, C4/5, and C6/7, 7 × C5/6) were dissected from fourteen human cadaver cervical spines (mean donor age 69 years, range 48–92; eight male). Loading was applied to the inferior facets of the inferior vertebra to simulate the in vivo inter-facet loading experienced during supraphysiologic anterior shear and flexion motion. Specimens were subjected to three cycles of sub-failure loading (10–100 N, 1 mm/s) in each direction, before being failed in a randomly assigned direction (10 mm/s). Facet deflection, surface strains, stiffness, and failure load were measured. Linear mixed-effects models (α = 0.05; random effect of cadaver) accounted for variations in specimen geometry and bone density. Specimen-specific parameters were significantly associated with most outcome measures. Facet stiffness and failure load were significantly greater in the simulated flexion loading direction, and deflection and surface strains were higher in anterior shear at the non-destructive analysis point (47 N applied load). The sub-failure strains and stiffness responses differed between the upper and lower subaxial cervical regions. Failure occurred through the facet tip during anterior shear loading, while failure through the pedicles was most common in flexion.  相似文献   

19.
The kinetics of Ca(2+)-induced contractions of chemically skinned guinea pig trabeculae was studied using laser photolysis of NP-EGTA. The amount of free Ca(2+) released was altered by varying the output from a frequency-doubled ruby laser focused on the trabeculae, while maintaining constant total [NP-EGTA] and [Ca(2+)]. The time courses of the rise in stiffness and tension were biexponential at 23 degrees C, pH 7.1, and 200 mM ionic strength. At full activation (pCa < 5.0), the rates of the rapid phase of the stiffness and tension rise were 56 +/- 7 s(-1) (n = 7) and 48 +/- 6 s(-1) (n = 11) while the amplitudes were 21 +/- 2 and 23 +/- 3%, respectively. These rates had similar dependencies on final [Ca(2+)] achieved by photolysis: 43 and 50 s(-1) per pCa unit, respectively, over a range of [Ca(2+)] producing from 15% to 90% of maximal isometric tension. At all [Ca(2+)], the rise in stiffness initially was faster than that of tension. The maximal rates for the slower components of the rise in stiffness and tension were 4.1 +/- 0.8 and 6.2 +/- 1.0 s(-1). The rate of this slower phase exhibited significantly less Ca(2+) sensitivity, 1 and 4 s(-1) per pCa unit for stiffness and tension, respectively. These data, along with previous studies indicating that the force-generating step in the cross-bridge cycle of cardiac muscle is marginally sensitive to [Ca(2+)], suggest a mechanism of regulation in which Ca(2+) controls the attachment step in the cross-bridge cycle via a rapid equilibrium with the thin filament activation state. Myosin kinetics sets the time course for the rise in stiffness and force generation with the biexponential nature of the mechanical responses to steps in [Ca(2+)] arising from a shift to slower cross-bridge kinetics as the number of strongly bound cross-bridges increases.  相似文献   

20.
The high water content of the intervertebral disc is essential to its load bearing function and viscoelastic mechanical behavior. One of the primary biochemical changes associated with disc degeneration is the loss of proteoglycans, which leads to tissue dehydration. While previous studies have reported the effects of in vivo degeneration on annulus fibrosus (AF) failure mechanics, the independent role of water remains unclear, as does the tissue’s rate-dependent failure response. Our first objective was to determine the effect of loading rate on AF failure properties in tension; our second objective was to quantify the effect of water content on failure properties. Water content was altered through enzymatic digestion of glycosaminoglycans (GAGs) and through osmotic loading. Bovine AF specimens were tested monotonically to failure along the circumferential direction at 0.00697%/s or 6.97%/s. Increased loading rate resulted in a ∼50% increase in linear-region modulus, failure stress, and strain energy density across all treatment groups (p < 0.001). Decreased GAG and water contents resulted in decreased modulus, failure stress, and strain energy density; however, these differences were only observed at the low loading rate (p < 0.05; no changes at high rate). Osmotic loading was used to evaluate the effect of hydration independently from GAG composition, resulting in similar decreases in water content, modulus, and strain energy density. This suggests that hydration is essential for maintaining tissue stiffness and energy absorption capacity, rather than strength, and that GAGs contribute to tissue strength independently from mediating water content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号