首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars.  相似文献   

2.
The Biosynthesis of (+)-Tartaric Acid in Pelargonium crispum   总被引:6,自引:5,他引:1  
Metabolic conversion of l-galactono-1, 4-lactone and l-ascorbic acid to (+)-tartaric acid and oxalic acid has been studied in Pelargonium crispum, cv. Prince Rupert. Experiments with specifically labeled substrates suggest a path of conversion involving cleavage of l-ascorbic acid, or a metabolic product of l-ascorbic acid, between C2 and C3, such that oxalic acid arises from the two carbon fragment and (+)-tartaric acid from the four carbon fragment.  相似文献   

3.
In silico analysis of the genome sequence of the meat-borne lactic acid bacterium (LAB) Lactobacillus sakei 23K has revealed a repertoire of potential functions related to the adaptation of this bacterium to the meat environment. Among these functions, the ability to use N-acetyl-neuraminic acid (NANA) as a carbon source could provide a competitive advantage for growth on meat in which this amino sugar is present. In this work, we proposed to analyze the functionality of a gene cluster encompassing nanTEAR and nanK (nanTEAR-nanK). We established that this cluster encoded a pathway allowing transport and early steps of the catabolism of NANA in this genome. We also demonstrated that this cluster was absent from the genome of other L. sakei strains that were shown to be unable to grow on NANA. Moreover, L. sakei 23K nanA, nanT, nanK, and nanE genes were able to complement Escherichia coli mutants. Construction of different mutants in L. sakei 23K ΔnanR, ΔnanT, and ΔnanK and the double mutant L. sakei 23K Δ(nanA-nanE) made it possible to show that all were impaired for growth on NANA. In addition, two genes located downstream from nanK, lsa1644 and lsa1645, are involved in the catabolism of sialic acid in L. sakei 23K, as a L. sakei 23K Δlsa1645 mutant was no longer able to grow on NANA. All these results demonstrate that the gene cluster nanTEAR-nanK-lsa1644-lsa1645 is indeed involved in the use of NANA as an energy source by L. sakei.  相似文献   

4.
The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations.

Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants.

In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant.

  相似文献   

5.
Temperature effects on nocturnal carbon gain and nocturnal acid accumulation were studied in three species of plants exhibiting Crassulacean acid metabolism: Mamillaria woodsii, Opuntia vulgaris, and Kalanchoë daigremontiana. Under conditions of high soil moisture, nocturnal CO2 gain and acid accumulation had temperature optima at 15 to 20°C. Between 5 and 15°C, uptake of atmospheric CO2 largely accounted for acid accumulation. At higher tissue temperatures, acid accumulation exceeded net carbon gain indicating that acid synthesis was partly due to recycling of respiratory CO2. When plants were kept in CO2-free air, acid accumulation based on respiratory CO2 was highest at 25 to 35°C. Net acid synthesis occurred up to 45°C, although the nocturnal carbon balance became largely negative above 25 to 35°C. Under conditions of water stress, net CO2 exchange and nocturnal acid accumulation were reduced. Acid accumulation was proportionally more decreased at low than at high temperatures. Acid accumulation was either similar over the whole temperature range (5-45°C) or showed an optimum at high temperatures, although net carbon balance became very negative with increasing tissue temperatures. Conservation of carbon by recycling respiratory CO2 was temperature dependent. At 30°C, about 80% of the dark respiratory CO2 was conserved by dark CO2 fixation, in both well irrigated and water stressed plants.  相似文献   

6.
Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2′-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2′-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2′-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B12, and it degraded 2,2′-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2′-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2′-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2′-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.  相似文献   

7.
Production of Hydrocinnamic Acid by Clostridia   总被引:7,自引:2,他引:5       下载免费PDF全文
Hydrocinnamic acid was found in acid extracts of spent growth medium from cultures of Clostridium sporogenes. The acid was identified by mass spectrometry and its identity was confirmed by gas chromatography. The acid was produced in relatively large amounts (2 to 3 μmoles/ml of medium) by C. sporogenes, toxigenic types A, B, D, and F of C. botulinum, and some strains of C. bifermentans. Other strains of C. bifermentans and strains of C. sordellii and C. caproicum produced only small amounts (0.1 to 0.4 μmoles/ml) of the acid. The acid was not detected in spent medium from toxigenic types C and E of C. botulinum or from 25 other strains representing eight Clostridium species. Resting cell suspensions exposed to l-phenylalanine produced hydrocinnamic and cinnamic acid; the latter compound probably functions as an intermediate in the metabolism of l-phenylalanine.  相似文献   

8.
The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and traces of ethanol. Based on stoichiometry studies and the high levels of NAD-linked 1,2-propanediol-dependent oxidoreductase (530 to 790 nmol min−1 mg of protein−1), a novel pathway for anaerobic lactic acid degradation is proposed. The anaerobic degradation of lactic acid by L. buchneri does not support cell growth and is pH dependent. Acidic conditions are needed to induce the lactic-acid-degrading capacity of the cells and to maintain the lactic-acid-degrading activity. At a pH above 5.8 hardly any lactic acid degradation was observed. The exact function of anaerobic lactic acid degradation by L. buchneri is not certain, but some results indicate that it plays a role in maintaining cell viability.  相似文献   

9.
The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.  相似文献   

10.
Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoAadhEnuoAndhptadld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.  相似文献   

11.
Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. We found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO, whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid.  相似文献   

12.
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.  相似文献   

13.
Monoterpenes with an unsaturated hydrocarbon structure are mineralized anaerobically by the denitrifying β-proteobacterium Alcaligenes defragrans. Organic acids occurring in cells of A. defragrans and culture medium were characterized to identify potential products of the monoterpene activation reaction. Geranic acid (E,E-3,7-dimethyl-2,6-octadienoic acid) accumulated to 0.5 mM in cells grown on α-phellandrene under nitrate limitation. Cell suspensions of A. defragrans 65Phen synthesized geranic acid in the presence of β-myrcene, α-phellandrene, limonene, or α-pinene. Myrcene yielded the highest transformation rates. The alicyclic acid was consumed by cell suspensions during carbon limitation. Heat-labile substances present in cytosolic extracts catalyzed the formation of geranic acid from myrcene. These results indicated that a novel monoterpene degradation pathway must be present in A. defragrans.  相似文献   

14.
Application of a high-performance liquid chromatography-based muramic acid assay with precolumn fluorescence derivatization to quantification of root-associated bacteria was studied both in pure cultures and in the rhizosphere of axenic Festuca rubra seedlings. Quantities of muramic acid from acid-hydrolyzed cells of Frankia strains, Streptomyces griseoviridis, Enterobacter agglomerans, Klebsiella pneumoniae, Pseudomonas sp., and Bacillus polymyxa were mostly proportional to the respective cell protein and carbon quantities, but in some strains, culture age and particularly sporulation affected these ratios considerably. The muramic acid/cell protein ratio was generally 2 to 4 times higher in strains of the two actinomycete genera, Frankia and Streptomyces, than in the rest of the strains. Quantification of Frankia strains, S. griseoviridis, E. agglomerans, and Pseudomonas sp. was also attempted from the rhizosphere of F. rubra seedlings which had been inoculated with pure cultured bacteria and incubated briefly. It was possible to quantify Frankia cells by use of the muramic acid assay from both the root and the growth medium, whereas cells of the rest of the bacterial genera could only be detected in the medium. The detection limit for muramic acid was about 10 ng/ml hydrolysis volume, and from the Festuca rhizosphere, 28 to 63% of the muramic acid in the Frankia inoculum was recovered.  相似文献   

15.
The consumption of lactate and amino acids is very important for microbial development and/or aroma production during cheese ripening. A strain of Yarrowia lipolytica isolated from cheese was grown in a liquid medium containing lactate in the presence of a low (0.1×) or high (2×) concentration of amino acids. Our results show that there was a dramatic increase in the growth of Y. lipolytica in the medium containing a high amino acid concentration, but there was limited lactate consumption. Conversely, lactate was efficiently consumed in the medium containing a low concentration of amino acids after amino acid depletion was complete. These data suggest that the amino acids are used by Y. lipolytica as a main energy source, whereas lactate is consumed following amino acid depletion. Amino acid degradation was accompanied by ammonia production corresponding to a dramatic increase in the pH. The effect of adding amino acids to a Y. lipolytica culture grown on lactate was also investigated. Real-time quantitative PCR analyses were performed with specific primers for five genes involved in amino acid transport and catabolism, including an amino acid transporter gene (GAP1) and four aminotransferase genes (ARO8, ARO9, BAT1, and BAT2). The expression of three genes involved in lactate transport and catabolism was also studied. These genes included a lactate transporter gene (JEN1) and two lactate dehydrogenase genes (CYB2-1 and CYB2-2). Our data showed that GAP1, BAT2, BAT1, and ARO8 were maximally expressed after 15 to 30 min following addition of amino acids (BAT2 was the most highly expressed gene), while the maximum expression of JEN1, CYB2-1, and CYB2-2 was delayed (≥60 min).  相似文献   

16.
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.  相似文献   

17.
Biosynthesis of jasmonic Acid by several plant species   总被引:36,自引:13,他引:23       下载免费PDF全文
Six plant species metabolized 18O-labeled 12-oxo-cis,cis-10,15-phytodienoic acid (12-oxo-PDA) to short chain cyclic fatty acids. The plant species were corn (Zea mays L.), eggplant (Solanum melongena L.), flax (Linum usitatissimum L.), oat (Avena sativa L.), sunflower (Helianthus annuus L.), and wheat (Triticum aestivum L.). Among the products was jasmonic acid, a natural plant constituent with growth-regulating properties. The pathway is the same as the one recently reported by us for jasmonic acid synthesis in Vicia faba L. pericarp. First, the ring double bond of 12-oxo-PDA is saturated; then β-oxidation enzymes remove six carbons from the carboxyl side chain of the ring. Substrate specificity studies indicated that neither the stereochemistry of the side chain at carbon 13 of 12-oxo-PDA nor the presence of the double bond at carbon 15 was crucial for either enzyme step. The presence of enzymes which convert 12-oxo-PDA to jasmonic acid in several plant species indicates that this may be a general metabolic pathway in plants.  相似文献   

18.
Nitrate supplied to legume plants inhibits the activity of nitrogenase in Rhizobium bacteroids in root nodules. The accumulation of amino N which is known to occur in Glycine max (L.) Merr. nodules as nitrogenase activity declines was studied in more detail by analysis of changes in free amino acid composition in response to high nitrate supply. A 6-fold increase in asparagine concentration in Bradyrhizobium japonicum bacteroids was found about the time of maximum nitrogenase inhibition. However, the accumulation of amino acids in soybean nodules lagged behind the inhibition of nitrogenase. Furthermore, in studies of a second legume, Phaseolus vulgaris (L.) inoculated with two different strains of Rhizobium phaseoli, a high nitrate treatment inhibited nitrogenase but had no significant effect on amino acid composition of nodules. The possibility that nitrate may interfere with the supply of carbon substrates to bacteroids was examined by the analysis of organic acids in legume nodules supplied with nitrate. Nitrate had a small (10-20%) negative effect on the concentration of tricarboxylic acid cycle acids in P. vulgaris nodules. However, in G. max nodules, high nitrate treatment resulted in significant increases in the concentration of malate, succinate, fumarate, and citrate. Thus, carbon deprivation of bacteroids also seems unlikely as a cause of the inhibition of nitrogenase by nitrate. There was a transient increase in ammonium concentration in P. vulgaris nodules in response to high nitrate treatment. This effect was rapid relative to other effects of nitrate on nodule composition and was roughly coincident with the rapid decline in acetylene reduction activity.  相似文献   

19.
Lerman JC 《Plant physiology》1974,53(4):581-584
The content of 13C varies in plants with Crassulacean acid metabolism. Differences up to 3.5‰ in the 13C/12C ratios were observed between leaves of different age in the same plant of Bryophyllum daigremontianum. Soluble and insoluble carbon in the same leaf differed up to 8‰, the largest difference occurring in the leaves with the highest Crassulacean acid metabolism activity. Models to account for the isotope discrimination by C3, C4, and Crassulacean acid metabolism plants are proposed.  相似文献   

20.
Chu C  Dai Z  Ku MS  Edwards GE 《Plant physiology》1990,93(3):1253-1260
The facultative halophyte, Mesembryanthemum crystallinum, shifts its mode of carbon assimilation from the C3 pathway to Crassulacean acid metabolism (CAM) in response to water stress. In this study, exogenously applied abscisic acid (ABA), at micromolar concentrations, could partially substitute for water stress in induction of CAM in this species. ABA at concentrations of 5 to 10 micromolar, when applied to leaves or to the roots in hydroponic culture or in soil, induced the expression of CAM within days (as indicated by the nocturnal accumulation of total titratable acidity and malate). After applying ABA there was also an increase in phosphoenolpyruvate carboxylase and NADP-malic enzyme activities. The degree and time course of induction by ABA were comparable to those induced by salt and water stress. Electrophoretic analyses of leaf soluble protein indicate that the increases in phosphoenolpyruvate carboxylase activity during the induction by ABA, salt, and water stress are due to an increase in the quantity of the enzyme protein. ABA may be a factor in the stress-induced expression of CAM in M. crystallinum, serving as a functional link between stress and biochemical adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号