首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastrokine-2 (GKN2) is a secretory peptide of human gastric surface mucous cells (SMCs). It forms disulfide-linked heterodimers with the trefoil factor family (TFF) peptide TFF1. Binding with TFF2 was also reported. Antral SMCs differ from those of the corpus by their TFF3 expression. The aim of this study was to localize GKN2 expression along the antral gland axis, to characterize the continuous regeneration of antral glands, and to investigate the interactions of GKN2 with TFF1, TFF2 and mucins. Methods: The spatial expression of GKN1, GKN2, TFF1-3, MUC5AC and MUC6 was determined using laser microdissection and RT-PCR analysis. Furthermore, antral extracts were separated by gel chromatography and the association of GKN2 with TFF1, TFF2, and mucins was investigated. Results: Differential GKN2 expression was localized along the rostro-caudal axis of the stomach. Laser microdissection revealed characteristic differential expression profiles of GKN1, GKN2, TFF1-3, MUC5AC and MUC6 along the antral gland axis. Both GKN2 and TFF1 were expressed in superficial SMCs. Surprisingly, the TFF1-GKN2 heterodimer did not associate with the mucin fraction; whereas TFF2 showed exclusive association with mucins. Conclusions: Maturation of antral SMCs occurs stepwise via trans-differentiation of TFF3 expressing progenitor cells. The TFF1-GKN2 heterodimer and TFF2 differ characteristically by their binding to gastric mucins. This points to different physiological functions of TFF1 and TFF2, the latter maybe acting as a 'link peptide' for stabilization of the gastric mucus.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The trefoil factor family (TFF) peptides are important in gastro-intestinal mucosal protection and repair. Their mechanism of action remains unclear and receptors are sought. We aimed to identify and characterise proteins binding to TFF2. A fusion protein of mouse TFF2 with alkaline phosphatase was generated and used to probe 2-D protein blots of mouse stomach. The resulting spots were analysed by MS. The protein identified was characterised by bioinformatics, rapid amplification of cDNA ends, in situ hybridisation (ISH) and immunohistochemistry (IHC). Functional assays were performed in gastrointestinal cell lines. A single major murine protein was identified and named blottin. It was previously unknown as a translated product. Blottin is also present in rat and human; the latter gene is also known as GDDR. The predicted full-length proteins are 184 amino acids long (20 kDa), reducing to 164 amino acids (18 kDa) after signal peptide cleavage. ISH of gastrointestinal tissues shows abundant blottin mRNA in gastric surface and foveolar epithelium. IHC shows cytoplasmic staining for blottin protein, and by immunoelectron microscopy in mucus granules and Golgi stacks. Previous work showed that blottin is down-regulated in gastric cancers. Blottin contains a BRICHOS domain, and has 56% similarity with gastrokine-1. Cultured HT-29 cells express blottin and show increased DNA synthesis with antiblottin antibody; however, this effect is reversed by the immunising peptide. We have identified and characterised a TFF2-binding protein produced by gastric epithelium. Blottin may play a role in gastrointestinal mucosal protection and modulate gut epithelial cell proliferation.  相似文献   

9.
10.
Gastrokine 1 (GKN1) is involved in the replenishment of the surface lumen epithelial cell layer, in maintaining the mucosal integrity, and could play a role in cell proliferation and differentiation. In fact, after injury of the gastric mucosa, restoration may occur very rapidly in the presence of GKN1. In contrast, if the protein is downregulated, the repair process may be hampered; however, application of GKN1 to gastrointestinal cells promoted epithelial restoration. Because GKN1 possesses some mitogenic effects on intestinal epithelial cells (IEC-6) whereas this protein was also capable of inhibiting proliferation in gastric cancer cells (MKN28), we decided to study its involvement in apoptosis to understand the role of GKN1 in the modulation of inflammatory damage or tumorigenesis in gastric mucosa. We found by cytofluorimetry, Western blot and RT-PCR that the overexpression of GKN1 in gastric cancer cell lines (AGS and MKN28) stimulated the expression of Fas receptor. Moreover, compared to control cells, a significant increase of apoptosis, evaluated by TUNEL, was observed when GKN1 transfected cells were treated with a monoclonal antibody (IgM) anti-Fas. The activation of Fas expression was also observed by the overexpression of GKN1 in other cancer cell lines. Moreover, in GKN1-overexpressing gastric cancer cells exposed to FasL, the activation of caspase-3 was also observed by Western blot and fluorescence assays. Our data represent the first report for GKN1 as modulator of apoptotic signals and suggest that GKN1 might play an important role for tissue repair during the early stages of neoplastic transformation.  相似文献   

11.
12.
13.
14.
Yan GR  Xu SH  Tan ZL  Yin XF  He QY 《Proteomics》2011,11(18):3657-3664
We previously used proteomics technology to globally identify gastric cancer-associated proteins and found that gastrokine 1 (GKN1) was dramatically underexpressed in gastric cancer tissues. Here, we further showed that GKN1 could inhibit cell growth and induce cell cycle arrest in gastric cancer cells. The activity of protein kinase PKCδ/θ was inhibited by GKN1, whereas the activity of ERK1/2 and JNK1/2 was increased by GKN1, suggesting that GKN1 induced growth inhibition of gastric cancer cells by synergistically regulating the activity of these protein kinases. Seventy-four proteins were found to be regulated by GKN1 by proteomics analysis, including α-enolase (ENO1) and Cathepsin D. Interestingly, ENO1 is an important hub in the protein-protein interaction network of the 74 differential proteins. Silencing of ENO1 resulted in growth inhibition and cell cycle arrest of gastric cancer cells, similar to the effect of GKN1 overexpression in cells, whereas ENO1 overexpression blocked GKN1-induced growth inhibition and cell cycle arrest. These observations suggested that ENO1 downregulation played an important role in GKN1-induced growth inhibition of gastric cancer cells.  相似文献   

15.
16.
17.
18.
19.
Trefoil factor family (TFF) peptides are typical secretory products of mucin-producing cells, e.g. of the gastrointestinal tract. Here, the expression and secretion of mucins and TFF peptides was studied in the HT-29 cell line throughout cellular growth and differentiation in relation to a mucin-secreting (HT-29 MTX) or an enterocyte-like (HT-29 G(-)) phenotype. mRNAs of several MUC and TFF genes were expressed in both cell subpopulations. However, for most MUC and TFF genes, the expression appeared strongly induced with the differentiation into the mucin-secreting phenotype. On the other hand, TFF2 was specifically expressed in the mucin-secreting HT-29 MTX cells. The differentiation of HT-29 MTX cells into the mucin-secreting phenotype was characterised by secretion of the gel-forming mucins MUC2, MUC5AC, and MUC5B, however, according to a different pattern in the course of differentiation. A significant amount of TFF1 and TFF3 was secreted after differentiation, also according to a different pattern, whereas TFF2 was only faintly detected. Secretagogues, known to induce the secretion of mucus, increased the secretion of all three TFF peptides. In contrast, neither a secretory mucin nor a TFF peptide was found in the culture medium of HT-29 G(-) cells. Overlay assays indicated that HT-29 MTX mucins bound to secretory peptides of HT-29 MTX cells with relative molecular mass similar to TFF peptides. TFF1 and TFF3 were specifically localised in the mucus layer of HT-29 MTX cells by confocal microscopy. Finally, the secretion of TFF peptides and mucins appears as a co-ordinated process which only occurs after differentiation into goblet cell-like phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号