首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diseases affecting motor neurons, such as amyotrophic lateral sclerosis (Lou Gerhig's disease), hereditary spastic paraplegia and spinal bulbar muscular atrophy (Kennedy's disease) are a heterogeneous group of chronic progressive diseases and are among the most puzzling yet untreatable illnesses. Over the last decade, identification of mutations in genes predisposing to these disorders has provided the means to better understand their pathogenesis. The discovery 13 years ago of SOD1 mutations linked to ALS, which account for less than 2% of total cases, had a major impact in the field. However, despite intensive research effort, the pathways leading to the specific motor neurons degeneration in the presence of SOD1 mutations have not been fully identified. This review provides an overview of the genetics of both familial and sporadic forms of ALS.  相似文献   

2.

Background

Potential biomarkers to aid diagnosis and therapy need to be identified for Amyotrophic Lateral Sclerosis, a progressive motor neuronal degenerative disorder. The present study was designed to identify the factor(s) which are differentially expressed in the cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (SALS; ALS-CSF), and could be associated with the pathogenesis of this disease.

Results

Quantitative mass spectrometry of ALS-CSF and control-CSF (from orthopaedic surgical patients undergoing spinal anaesthesia) samples showed upregulation of 31 proteins in the ALS-CSF, amongst which a ten-fold increase in the levels of chitotriosidase-1 (CHIT-1) was seen compared to the controls. A seventeen-fold increase in the CHIT-1 levels was detected by ELISA, while a ten-fold elevated enzyme activity was also observed. Both these results confirmed the finding of LC-MS/MS. CHIT-1 was found to be expressed by the Iba-1 immunopositive microglia.

Conclusion

Elevated CHIT-1 levels in the ALS-CSF suggest a definitive role for the enzyme in the disease pathogenesis. Its synthesis and release from microglia into the CSF may be an aligned event of neurodegeneration. Thus, high levels of CHIT-1 signify enhanced microglial activity which may exacerbate the process of neurodegeneration. In view of the multifold increase observed in ALS-CSF, it can serve as a potential CSF biomarker for the diagnosis of SALS.  相似文献   

3.
Sporadic amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/antioxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting that multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly supports the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Accumulating evidence indicates that various miRNAs, expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, misregulation of microRNAs contributes to some mental disorders and neurodegeneration diseases. Here, we analyzed the expression profiles of 911 human miRNAs using microarray technology in leukocytes, the most readily available human tissue cells, obtained from 8 patients affected by sporadic amyotrophic lateral sclerosis (sALS) and 12 healthy controls. An independent group of 14 sALS patients and 14 controls was used for validation by TaqMan real-time polymerase chain reaction assay. We identified 8 miRNAs that were significantly up- or downregulated in sALS patients as compared to healthy controls. The significant variations in miRNAs profiles detected in leukocytes have been related to miRNAs predominantly expressed in the nervous system. One of these miRNAs, miR-338-3p, has previously been shown to be de-regulated in ALS brains. This study, for the first time, detected specific microRNAs disease-related changes at an earlier stage of sALS. We suggest that miRNAs profiles found in the peripheral blood leukocytes from sALS patients can be relevant to understand the pathogenesis of sALS and/or used as biomarkers of the disease.  相似文献   

5.
6.
In amyotrophic lateral sclerosis (ALS), abnormal accumulation of neurofilaments induces pathological changes such as axonal spheroids, cord-like neurite swellings, and perikaryal conglomerate inclusions in degenerating motor neurons of the spinal cord, and the accumulation seems to cause motor neuron degeneration in this disease. Such ALS lesions were intensely labeled with HepSS-1, a monoclonal antibody to heparan sulfate. Since the identification of HepSS-1-immunoreactive substance seems to be an important step for understanding the molecular pathology of ALS, we purified the substance from human spinal cord tissue to homogeneity. Amino acid sequence of the protein was consistent with that of galectin-1. Immunohistochemistry using antibodies against recombinant human galectin-1 showed that galectin-1 was accumulated in these lesions in ALS. Although HepSS-1 was believed to be specific for heparan sulfate, it reacted with recombinant human galectin-1 which has no heparan sulfate moiety. The results show that galectin-1 is a component of the neurofilamentous lesions in ALS. Since galectin-1 has axonal regeneration-enhancing activity, the abnormal accumulation of galectin-1 to the lesions seems to be related to the pathological process of ALS.  相似文献   

7.
8.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which primarily affects motor neurons. Eight cases of ALS and seven control cases were studied with semiquantitative immunocytochemistry for chromogranin A, chromogranin B and secretogranin II that are soluble constituents of large dense core vesicles, synaptophysin as a membrane protein of small synaptic vesicles and superoxide dismutase 1. Among the chromogranin peptides, the number and staining intensity of motor neurons was highest for chromogranin A. In ALS, the staining intensity for chromogranin peptides and synaptophysin was significantly lower in the ventral horn of ALS patients due to a loss in immunoreactive motor neurons, varicose fibers and varicosities. For all chromogranins, the remaining motor neurons displayed a characteristic staining pattern consisting of an intracellular accumulation of immunoreactivity with a high staining intensity. Confocal microscopy of motor neurons revealed that superoxide dismutase 1-immunopositive intracellular aggregates also contained chromogranin A, chromogranin B and secretogranin II. These findings indicate that there is a loss of small and large dense core vesicles in presynaptic terminals. The intracellular co-occurrence of superoxide dismutase 1 and chromogranins may suggest a functional interaction between these proteins. This study should prompt further experiments to elucidate the role of chromogranins in ALS patients.  相似文献   

9.
The image recapitulates the interplay between neuronal and vascular systems by highlighting the cellular players involved in the molecular signalling in the context of Amyotrophic Lateral Sclerosis.
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
The neurovascular system (NVS) is a complex anatomic-functional unit that synergically works to maintain organs/tissues homeostasis of the entire body. NVS alterations have recently emerged as a common distinct feature in the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Despite their undeniable involvement, neurovascular signalling pathways remain still far unknown in ALS. This review underlines the importance of endothelial, mural, and fibroblast cells as novel targets for ALS investigation and identifies in the interplay between neuronal and vascular systems the way to disclose novel molecular mechanisms behind the pathogenesis of ALS.  相似文献   

10.
11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motor neurons are selectively targeted. Although the underlying cause remains unclear, evidence suggests a role for innate immunity in disease pathogenesis. Neuroinflammation in areas of motor neuron loss is evident in presymptomatic mouse models of ALS and in human patients. Efforts aimed at attenuating the inflammatory response in ALS animal models have delayed symptom onset and extended survival. Seemingly conversely, attempts to sensitize cells of the innate immune system and modulate their phenotype have also shown efficacy. Effectors of innate immunity in the CNS appear to have ambivalent potential to promote either repair or injury. Because ALS is a syndromic disease in which glutamate excitotoxicity, altered cytoskeletal protein metabolism, oxidative injury, mitochondrial dysfunction and neuroinflammation all contribute to motor neuron degeneration, targeting inflammation via modulation of microglial function therefore holds significant potential as one aspect of therapeutic intervention and could provide insight into the exclusive vulnerability of motor neurons.  相似文献   

12.
Mitochondrial involvement in amyotrophic lateral sclerosis   总被引:8,自引:0,他引:8  
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are so far unknown. The involvement of mitochondria in the disease was initially suggested by ultrastructural studies. More recently these observations have been supported by studies of mitochondrial function in ALS. Alterations in the activity of complexes which make up the mitochondrial electron transport chain have been recorded as well as mutations in the mitochondrial genome. The calcium buffering function of the mitochondria may also be affected in the disease. This review will discuss how mitochondrial dysfunction could be of relevance in ALS and the evidence that an alteration of mitochondrial function is a feature of the disease. The way in which the involvement of mitochondria fits with other aetiological hypotheses for ALS will also be discussed.  相似文献   

13.
Despite numerous reports demonstrating mitochondrial abnormalities associated with amyotrophic lateral sclerosis (ALS), the role of mitochondrial dysfunction in the disease onset and progression remains unknown. The intrinsic mitochondrial apoptotic program is activated in the central nervous system of mouse models of ALS harboring mutant superoxide dismutase 1 protein. This is associated with the release of cytochrome-c from the mitochondrial intermembrane space and mitochondrial swelling. However, it is unclear if the observed mitochondrial changes are caused by the decreasing cellular viability or if these changes precede and actually trigger apoptosis. This article discusses the current evidence for mitochondrial involvement in familial and sporadic ALS and concludes that mitochondria is likely to be both a trigger and a target in ALS and that their demise is a critical step in the motor neuron death.  相似文献   

14.
The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging “dying-back” axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology.  相似文献   

15.

Background  

Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis  相似文献   

16.
BACKGROUND: Massive neurofilament conglomeration in motor neurons has been described to occur in the early stages of both familial and sporadic amyotrophic lateral sclerosis (ALS). Previously, neurofilament conglomerates were immunolabeled for both superoxide dismutase (SOD1) and nitrotyrosine, suggesting the potential for oxidative nitration damage to neurofilament protein by peroxynitrite. Long-lived neurofilaments may also undergo modification by advanced glycation endproducts (AGEs) with concomitant generation of free radicals, including superoxide. This radical species may then react with nitric oxide to form the potent oxidant, peroxynitrite, which in turn can nitrate neurofilament protein. Such a glycated and nitrated neurofilament protein may become resistant to proteolytic systems, forming high-molecular-weight protein complexes and cytotoxic, neuronal inclusions. MATERIALS AND METHODS: Paraffin sections containing both neurofilament conglomerates and neuronal inclusions were obtained from patients with sporadic (n = 5) and familial (n = 2) ALS and were probed with specific antibodies directed against the AGEs cypentodine/piperidine-enolone, arginine-lysine imidazole, pentosidine, and pyrraline. RESULTS: Neurofilament conglomerates, but not neuronal inclusions, were intensely immunolabeled with each of the anti-AGE antibodies tested. The immunoreactivity was selective for neurofilament conglomerates and suggested that AGEs may form inter- or intramolecular cross-links in neurofilament proteins. CONCLUSIONS: These data support the hypothesis that AGE formation affects neurofilament proteins in vivo and is associated with the concomitant induction of SODI and protein nitration in neurofilament conglomerates. AGE formation in neurofilament protein may not only cause covalent cross-linking but also generate superoxide and block nitric oxide-mediated responses, thereby perpetuating neuronal toxicity in patients with ALS.  相似文献   

17.
Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be “repaired” by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p < 0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.  相似文献   

18.
Aims: Sporadic amyotrophic lateral sclerosis (SALS) seems to be a multifactorial disease, the pathogenesis of which may involve both genetic and environmental factors. The present study aims at identifying a possible genetic change that confers risk for SALS. Methods: We performed whole-genome screening of a copy-number variation (CNV) using a CNV beadchip, followed by real-time quantitative polymerase chain reaction (qPCR) and region-targeted high-density oligonucleotide tiling microarray. Results: Within the 40-kb region on 10p15.3 subtelomere, which harbours two genes encoding isopentenyl diphosphate isomerase 1 (IDI1) and IDI2, we found a segmental copy-number gain in a large proportion of SALS patients. qPCR analysis demonstrated the copy-number gain in 46 out of 83 SALS patients, as compared with 10 out of 99 controls (p = 4.86 × 10−11, Odds Ratio 10.8); subsequent tiling microarray validated qPCR results and elucidated the fine structure of segmental gains. Conclusions: A segmental copy-number gain in the IDI1/IDI2 gene region may play a significant role in the pathogenesis of SALS.  相似文献   

19.
  1. Download : Download high-res image (86KB)
  2. Download : Download full-size image
  相似文献   

20.
The regional distribution of nerve growth factor (NGF) and insulin-like growth factor-1 (IGF-1) receptors in human spinal cords from controls and amyotrophic lateral sclerosis (ALS) patients was studied by quantitative autoradiography. High-affinity nerve growth factor receptors were found to be distributed to a similar extent within the various segments of the human spinal cord and predominantly within the substantia gelatinosa of the dorsal horn, whereas no significant binding could be detected in the motor-neuron areas. A similar pattern of binding was obtained in the ALS spinal cords. Moreover, no reexpression of NGF receptors could be demonstrated in the motor-neuron areas of ALS spinal cords. When comparing125I-IGF-1 binding in the different spinal levels of normal spinal cord, the same distribution pattern was found in which the binding was highest in the central canal > dorsal horn > ventral horn > white matter. In the ALS cases, although a general upregulation of IGF-1 receptors was observed throughout the spinal cord, significant increases were observed in the cervical and sacral segments compared to controls. The cartography of IGF-1 receptors in the normal spinal cord as well as the change of these receptors in diseased spinal cord may be of importance in future treatment strategies of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号