首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
Zhang L  Yun H  Murray F  Lu R  Wang L  Hook V  Insel PA 《Cellular signalling》2011,23(10):1611-1616
The mechanism of cAMP-promoted apoptosis is not well defined. In wild-type (WT) murine S49 lymphoma cells, cAMP promotes apoptosis in a protein kinase A (PKA)-dependent manner. We find that treatment of WT S49 cells with 8-CPT-cAMP prominently increases the expression (as determined by DNA microarray analysis, real-time PCR and immunblotting) of cytotoxic T lymphocyte antigen-2α (CTLA-2α), a cathepsin L-like cysteine protease inhibitor. By contrast, CTLA-2α expression is only slightly increased by 8-CPT-cAMP treatment of D-S49 cells, which lack cAMP/PKA-promoted apoptosis. Raising endogenous cAMP (by use of forskolin or inhibition of phosphodiesterase [PDE] 4) or a PKA-selective, but not an Epac-selective, cAMP analogue, increases CTLA-2α mRNA expression; PKA, and not Epac, thus mediates the increase in CTLA-2α expression. An adenoviral CLTA-2α (Ad-CTLA-2α) construct induces apoptosis and enhances cAMP-promoted apoptosis in WT S49 cells but such cells do not have an increase in cathepsin L activity nor does a cathepsin L inhibitor alter cAMP-promoted apoptosis. 8-CPT-cAMP also increases CTLA-2α expression and induces apoptosis in murine cardiac fibroblasts; knockdown of CTLA-2α expression by siRNA blocks 8-CPT-cAMP-promoted apoptosis. Thus, cAMP increases CTLA-2α expression in murine lymphoma and cardiac fibroblasts and this increase in CTLA-2α contributes to cAMP/PKA-promoted apoptosis by mechanisms that are independent of the ability of CTLA-2α to inhibit cathepsin L.  相似文献   

4.
5.
6.
During B- and T-cell ontogeny, extensive apoptosis occurs at distinct stages of development. Agents that increase intracellular levels of cAMP induce apoptosis in thymocytes and mature B cells, prompting us to investigate the role of cAMP signaling in human CD10+ B-precursor cells. We show for the first time that forskolin (which increases intracellular levels of cAMP) increases apoptosis in the CD10+ cells in a dose-dependent manner (19%–94% with 0–1,000 μM forskolin after 48 hours incubation, IC50 = 150 μM). High levels of apoptosis were also obtained by exposing the cells to the cAMP analogue 8-chlorophenylthio-cAMP (8-CPT-cAMP). Specific involvement of cAMP-dependent protein kinase (PKA) was demonstrated by the ability of a cAMP antagonist, Rp-isomer of 8-bromo-adenosine- 3′, 5′- monophosphorothioate (Rp-8-Br-cAMPS), to reverse the apoptosis increasing effect of the complementary cAMP agonist, Sp-8-Br-cAMPS. Furthermore, we investigated the expression of Bcl-2 family proteins. We found that treatment of the cells with forskolin or 8-CPT-cAMP for 48 hours resulted in a fourfold decline in the expression of Mcl-1 (n = 6, P = 0.002) compared to control cells. The expression of Bcl-2, Bcl-xl , or Bax was largely unaffected. Mature peripheral blood B cells showed a smaller increase in the percentage of apoptotic cells in response to 8-CPT-cAMP (1.3-fold, n = 6, P = 0.045) compared to B-precursor cells, and a smaller decrease in Mcl-1 levels (1.5-fold, n = 4, P = 0.014). Taken together, these findings show that cAMP is important in the regulation of apoptosis in B-progenitor and mature B cells and suggest that cAMP-increased apoptosis could be mediated, at least in part, by a decrease in Mcl-1 levels. J. Cell. Physiol. 180:71–80, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
8.
9.
Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin S49 cells. WT, but not kin, S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses.  相似文献   

10.
11.
Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.  相似文献   

12.
13.
Glucocorticoids can mediate the destruction of thymocytes and T cell-derived leukemia cells through a mechanism known as apoptosis. The characteristic feature of apoptosis is fragmentation of DNA at internucleosomal linkers through the activity of a specific endonuclease. In this study, an attempt was made to compare dexamethasone-induced apoptosis in two T cell-derived human leukemia lines (CEM-C1 and CEM-C7) to the cell killing brought about by selected cytotoxic agents. In the CEM-C7 cell line (dexamethasone-sensitive), apoptosis was induced not only by dexamethasone but by actinomycin D, cycloheximide, and 25-OH cholesterol. In the CEM-C1 cell line (dexamethasone-resistant) cycloheximide, 25-OH cholesterol, or cell starvation could induce apoptosis. It appears that in leukemic cells apoptosis may be induced by a variety of unrelated toxic agents and is not limited to glucocorticoids.  相似文献   

14.
15.
We have recently reported that thapsigargin (TG), a specific endoplasmic reticulum (ER)-associated Ca(2+)-ATPase inhibitor, induces apoptosis in mouse lymphoma cells. In view of recent evidence that the imidazole antifungals econazole (EC) and miconazole (MC) inhibit TG-sensitive Ca(2+)-ATPase activity in normal rat thymocytes, we investigated the effect of these agents on intracellular Ca(2+) homeostasis and cell survival in WEHI7.2 mouse lymphoma cells and human CEMT-cell leukemia cells. In this report, we demonstrate that MC treatment releases Ca(2+) from the TG-sensitive ER pool of WEHI7.2 cells. MC induced apoptosis, based on morphological and biochemical criteria, and on inhibition by the Bcl-2 oncogene. Moreover, intracellular Ca(2+) changes induced by MC treatment were inhibited by overexpression of Bcl-2. In addition to inducing cell death in WEHI7.2 cells, MC induced apoptosis in the glucocorticoid sensitive and resistant human T-cell leukemia lines, CEM-C7 and CEM-C1 respectively, in normal thymocytes and in normal lymphocytes. Based on their apoptosis-inducing activity, imidazole derivatives should be explored as potential immunosuppressive and/or chemotherapeutic agents.  相似文献   

16.
Glucocorticoid (GC) steroid hormones induce apoptosis in acute lymphoblastic leukemia (ALL). Autoup-regulation of human GC receptor (hGR) levels is associated with sensitivity to GC-mediated apoptosis. Among the major hGR promoters expressed in 697 pre-B-ALL cells (1A, 1B, 1C, and 1D), only promoters 1C and 1D are selectively activated by the hormone. Promoter 1B is unresponsive, and promoter 1A is down-regulated by dexamethasone (Dex) in 697 cells, whereas they are both up-regulated in CEM-C7 T-ALL cells. Autoup-regulation of promoter 1C and 1D in 697 cells requires sequences containing GC response units (GRUs) (1C GRU, -2915/-2956; 1D GRU, -4525/-4559) that were identified previously in CEM-C7 cells. These GRUs potentially bind GR, c-myeloblastosis (c-Myb), and E-twenty six (Ets) proteins; 697 cells express high levels of c-Myb protein, as well as the E-twenty six family protein members, PU.1 and Spi-B. Dex treatment in 697 cells elevates the expression of c-Myb and decreases levels of both Spi-B and PU.1. Chromatin immunoprecipitation assays revealed the specific recruitment of GR, c-Myb, and cAMP response element-binding protein binding protein to the 1C and 1D GRUs upon Dex treatment, correlating to observed autoup-regulated activity in these two promoters. These data suggest a hormone activated, lineage-specific mechanism to control the autoup-regulation of hGR gene expression in 697 pre-B-ALL cells via steroid-mediated changes in GR coregulator expression. These findings may be helpful in understanding the mechanism that determines the sensitivity of B-ALL leukemia cells to hormone-induced apoptosis.  相似文献   

17.
Conflicting reports have attributed 8-chloro-cAMP (Cl-cAMP)-mediated inhibition of tumor cell growth to either a toxic 8-chloro-adenosine (Cl-AdR) breakdown product or a Cl-cAMP-mediated decrease in ratio of Type I to Type II regulatory (R) subunits of protein kinase A (PKA). Using the MCF-7 human breast cancer and S49 mouse lymphoma cell lines as models, we show that the effects of Cl-cAMP and other cAMP analogs on growth and R subunit expression are unrelated. MCF-7 cell growth was insensitive to most analogs and inducers of cAMP, but was potently inhibited by Cl-cAMP acting through uptake and phosphorylation of its Cl-AdR breakdown product. Possible roles of adenosine receptors or P(2) purinoceptors in these Cl-cAMP-mediated growth effects were ruled out by studies with agonists and antagonists. Cholera toxin markedly decreased the ratio of Type I to Type II R subunits in MCF-7 cells without affecting growth, while growth inhibitory concentrations of Cl-cAMP or Cl-AdR had insignificant effects on this ratio. In S49 cells, where PKA activation is known to inhibit cell growth, PKA-deficient mutants retained sensitivity to both Cl-cAMP and the related 8-bromo-cAMP. Adenosine kinase (AK)-deficient S49 cells were inhibited only by higher concentrations of these 8-halogenated cAMP analogs. Of the commonly used cAMP analogs, only 8-(4-chlorophenylthio)-cAMP acted purely as a cyclic nucleotide-having no effect on PKA-deficient cells, but strongly inhibiting both wild-type and AK-deficient cells. Where growth inhibitory concentrations of most cAMP analogs reduced RI expression in the AK-deficient mutant, a functionally equivalent concentration of (N(6), O(2'))dibutyryl-cAMP maintained or increased this expression.  相似文献   

18.
Bcr-Abl kinase is known to reverse apoptosis of cytokine-dependent cells due to cytokine deprivation, although it has been controversial whether chronic myeloid leukemia (CML) progenitors have the potential to survive under conditions in which there are limited amounts of cytokines. Here we demonstrate that early hematopoietic progenitors (Sca-1(+) c-Kit(+) Lin(-)) isolated from normal mice rapidly undergo apoptosis in the absence of cytokines. In these cells, the expression of Bim, a proapoptotic relative of Bcl-2 which plays a key role in the cytokine-mediated survival system, is induced. In contrast, those cells isolated from our previously established CML model mice resist apoptosis in cytokine-free medium without the induction of Bim expression, and these effects are reversed by the Abl-specific kinase inhibitor imatinib mesylate. In addition, the expression levels of Bim are uniformly low in cell lines established from patients in the blast crisis phase of CML, and imatinib induced Bim in these cells. Moreover, small interfering RNA that reduces the expression level of Bim effectively rescues CML cells from apoptosis caused by imatinib. These findings suggest that Bim plays an important role in the apoptosis of early hematopoietic progenitors and that Bcr-Abl supports cell survival in part through downregulation of this cell death activator.  相似文献   

19.
Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.  相似文献   

20.
Previous studies have indicated that cAMP has bidirectional effects on epidermal growth factor (EGF)-induced DNA synthesis in cultured hepatocytes, acting to stimulate soon after plating (early G(1)) and to inhibit at later stages (nearer the G(1)/S transition). In this study we examined the role of the extracellular signal-regulated kinase (ERK) subgroup (p42/p44) of the mitogen activated protein (MAP) kinases both at growth-stimulatory and growth-inhibitory conditions. When added at low concentrations early during culturing, glucagon and 8-chlorophenylthio-cAMP (8-CPT-cAMP) did not increase MAP kinase activity, but enhanced the subsequent DNA synthesis. However, when administered at 24 h, glucagon and 8-CPT-cAMP decreased basal and EGF-induced MAP kinase activity and also inhibited EGF-induced DNA synthesis. Thus, although MAP kinase might play a role in the growth-inhibitory effect, it does not seem to be involved in growth-promoting regulation by cAMP in hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号