共查询到20条相似文献,搜索用时 62 毫秒
1.
Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production 总被引:3,自引:0,他引:3
Recently, considerable attention has been focused on chitosan oligosaccharides (COSs) due to their various biological activities. COSs can be prepared by enzymatic degradation of chitosan, which is the deacetylation product of chitin, one of the most abundant biopolymers in nature. In the current study, we recombinantly expressed a chitosanase and used it for COS preparation. A bacillus-derived GH8 family chitosanase with a 6×His tag fused at its N-terminal was expressed in the Escherichia coli strain BL21(DE3) as a soluble and active form. Its expression level could be as high as 500 mg/L. Enzymatic activity could reach approximately 140,000 U/L under our assay conditions. The recombinant chitosanase could be purified essentially to homogeneity by immobilized metal-ion affinity chromatography. The enzyme could efficiently convert chitosan into monomer-free COS: 1 g of enzyme could hydrolyze about 100 kg of chitosan. Our present work has provided a cheap chitosanase for large-scale COS production in industry. 相似文献
2.
《Process Biochemistry》2014,49(12):2107-2113
Chitosanase-coated silica-gels were prepared via cross-linking of the chitosanase onto silica-gels for the efficient production of multisize chitooligosaccharides (MCOs) in a continuous process. The kinetic aspects of immobilized chitosanase (IMMCTase) were investigated based on the reaction time, production of MCOs, and MALDI-TOF mass analyses to achieve maximum bioconversion of high molecular weight chitosan (HMWC) to MCOs. IMMCTase revealed a negligible loss of chitosanase activity after multi uses in continuous digestion of HMWC. The optimal temperature of IMMCTase was 37 °C, and kinetic parameters toward HMWC were determined to be Km = 1.45 mM and Vmax = 360 μmole/μg/min, respectively. Under optimal conditions, the recovery of enzyme activity of IMMCTase was determined to be 82.3%, thus indicating that it can still be reused few more times. In conclusion, use of IMMCTase resulted in rapid and efficient digestions of HMWC with consistent results to produce MCOs. 相似文献
3.
4.
For the enzymatic production of chitosan oligosaccharides from chitosan, a chitosanase-producing bacterium, Bacillus sp. strain KCTC 0377BP, was isolated from soil. The bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. The production of chitosanase was increased from 1.2 U/ml in a minimal chitosan medium to 100 U/ml by optimizing the culture conditions. The chitosanase was purified from a culture supernatant by using CM-Toyopearl column chromatography and a Superose 12HR column for fast-performance liquid chromatography and was characterized according to its enzyme properties. The molecular mass of the enzyme was estimated to be 45 kDa by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme demonstrated bifunctional chitosanase-glucanase activities, although it showed very low glucanase activity, with less than 3% of the chitosanase activity. Activity of the enzyme increased with an increase of the degrees of deacetylation (DDA) of the chitosan substrate. However, the enzyme still retained 72% of its relative activity toward the 39% DDA of chitosan, compared with the activity of the 94% DDA of chitosan. The enzyme produced chitosan oligosaccharides from chitosan, ranging mainly from chitotriose to chitooctaose. By controlling the reaction time and by monitoring the reaction products with gel filtration high-performance liquid chromatography, chitosan oligosaccharides with a desired oligosaccharide content and composition were obtained. In addition, the enzyme was efficiently used for the production of low-molecular-weight chitosan and highly acetylated chitosan oligosaccharides. A gene (csn45) encoding chitosanase was cloned, sequenced, and compared with other functionally related genes. The deduced amino acid sequence of csn45 was dissimilar to those of the classical chitosanase belonging to glycoside hydrolase family 46 but was similar to glucanases classified with glycoside hydrolase family 8. 相似文献
5.
Chitosanase is an enzyme that hydrolyzes chitosan, a beta-(1-4) glucosamine polymer, into size-specific oligomers that have pharmaceutical and biological properties. The aim of the present work was to use the bipolar membrane technology, in particular the OH(-) stream produced by water splitting, for inactivation of chitosanase at alkaline pH in order to terminate the enzymatic reaction producing chitosan oligomers. The objectives consisted of studying the effect of pH: (a) on the stability of chitosanase, and (b) on the catalytic activity of chitosanase during chitosan hydrolysis. The enzyme was found to be stable in the pH range of 3-8 during at least 7h, and partially lost its activity after 1h at pH 8. The catalytic activity of chitosanase during chitosan hydrolysis decreased after pH adjustment by electrobasification. The reaction rate decreased by 50% from pH 5.5 to 6, whereas the reaction was completely inhibited at pH>7. The decrease of reaction rate was due to chitosan substrate insolubilization and chitosanase denaturation at alkaline pH values. 相似文献
6.
Ho Sup Jung Jeong Woo Son Hong Seok Ji Kwang Kim 《Biotechnology and Bioprocess Engineering》1999,4(1):26-31
The advantages of the organismStreptomyces griseus HUT 6037 is that the chitinase and chitosanase using chitinaceouse substrate are capable of hydrolyzing both amorphous and
crystalline chitin and chitosan. We attempted to investigate the optimization of induction protocol for high-level production
and secretion of chitosanase and the influence of chitin and partially deacetylated chitosan sources (75–99% deactylation).
The maximum specific activity of chitinase has been found at 5 days cultivation with the 48 hours induction time using colloidal
chitin as a carbon source. To investigate characteristic of chitosan activity according to substrate, we used chitosan with
various degree of deacetylation as a carbon source and found that this strain accumulates chitosanase in the culture medium
using chitosanaceous substrates rather than chitinaceous substrates. The highest chitosanase activity was also presented on
4 days with 99% deacetylated chitosan.
The partially 53% deacetylated chitosan can secrete both chitinase and chitosanase which was defined as a soluble chitosan.
The specific activities of chitinase and chitosanase were 0.89 at 3 days and 1.33 U/mg protein at 5 days, respectively. It
indicate that chitosanase obtained fromS. griseus HUT 6037 can hydrolyze GlcNAc-GlcN and GlcN-GlcN linkages by exo-splitting manner. This activity increased with increasing
degree of deacetylation of chitosan. It is the first attempt to investigate the effects of chitosanase on various degrees
of deacetylations of chitosan byS. griseus HUT 6037. The highest specific activity of chitosanase was obtained with 99% deacetylated chitosan. 相似文献
7.
目的研究属于蜗牛的壳聚糖水解酶的纯化方法,得到壳聚糖水解酶的纯品,从而为氨基酸序列分析、基因克隆及工业菌制备奠定前期基础。方法建立检测蜗牛壳聚糖水解酶活性的手段并考察影响酶活性的各种因素,比较现有层析方法纯化蜗牛壳聚糖水解酶的实际效果,确定纯化的最佳条件,从而设计出最合理的纯化方案。结果经苯基琼脂糖柱层析,DEAE-Sepharose离子交换层析和Sephacryl S-300凝胶过滤分离,得到高纯高活性蛋白质,在SDS-PAGE上用银染的方法呈单一蛋白质条带,比活性提高33.333倍,纯化倍数为18.272,得率为0.15。结论实验建立了1种从蜗牛中分离高效高纯度壳聚糖水解酶的方法,为壳寡糖的酶解工业生产提供了新思路、新方法。 相似文献
8.
《Biochemical Engineering Journal》2006,29(3):289-294
An immobilized enzyme bioreactor consisting of an agar gel-coated multidisk impeller was developed for the hydrolysis of highly viscous chitosan solutions, and the operating conditions for the production of physiologically active chitosan oligosaccharides (pentamers and hexamers) were investigated. Chitosanase was directly immobilized on the agar gel-coated multidisk impeller by a multipoint attachment method. The high stability of the immobilized enzyme was confirmed by means of five repetitions of a batch hydrolysis reaction. When the enzyme activity at the support surface was relatively high, the yield of the target products was higher at an impeller speed of 2 s−1 than at a speed of 1 s−1. However, no significant increase in yield was observed at impeller speeds higher than 2 s−1 in reactions at either of the two substrate concentrations tested (5 and 20 kg/m3). When the surface enzyme activity was low, the impeller speed did not affect the yield of the target products. The maximum yield of pentamers and hexamers increased as the surface enzyme activity decreased, and high yields (>30%) were obtained at activities below 160 U/m2. From the viewpoint of productivity, the optimal surface-enzyme activity was about 340 U/m2, and at that activity, the yield of target products was 22%. This yield was higher than that reported for conventional acid hydrolysis. To maximize both the productivity and the yield of the target products, the surface area for the immobilized enzyme should be increased. Our results suggest that it may be possible to obtain high yields of pentamers and hexamers of chitosan oligosaccharides from highly viscous chitosan solutions with this reactor. 相似文献
9.
Background
Chitosanases are enzymes hydrolysing chitosan, a β-1,4 linked D-glucosamine bio-polymer. Chitosan oligosaccharides have numerous emerging applications and chitosanases can be used for industrial enzymatic hydrolysis of chitosan. These extracellular enzymes, produced by many organisms including fungi and bacteria, are well studied at the biochemical and enzymatic level but very few works were dedicated to the regulation of their gene expression. This is the first study on the genetic regulation of a heterologous chitosanase gene (csnN106) in Streptomyces lividans. 相似文献10.
The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacterium sp. OU01 in shake-flask. A significant influence of (NH(4))(2)SO(4), MgSO(4).7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0g/L (NH(4))(2)SO(4), 1.3g/L MgSO(4) and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6U/mL to 118U/mL. 相似文献
11.
In lactose and leucine-limited continuous cultures of Streptococcus cremoris a linear relationship exists between specific rate of lactate production and specific growth rate. The rate of acid production in leucine-limited cultures is much higher than in lactose-limited cultures, indicating that under these conditions metabolic energy production is not coupled to growth and that metabolic energy has to be dissipated S. cremoris contains phosphofructokinase and fructose-1,6-diphosphatase, joint action of these two enzymes results in an ATP consuming futile cycle. Analyses of intracellular metabolite pools suggested that AMP and phosphoenolpyruvate play important roles in the regulation of the activity of this futile cycle.Abbreviations PEP
Phosphoenolpyruvate
- PFK
phosphofructokinase (EC 2.7.1.11)
- FBPase
fructose-1,6-bisphosphatase (EC 3.1.3.11) 相似文献
12.
Action pattern of Bacillus sp. no. 7-M chitosanase on partially N-acetylated chitosan. 总被引:6,自引:0,他引:6
M Izume S Nagae H Kawagishi M Mitsutomi A Ohtakara 《Bioscience, biotechnology, and biochemistry》1992,56(3):448-453
The hydrolyzate of partially N-acetylated chitosan by Bacillus sp. No. 7-M chitosanase was separated by gel filtration on Bio-Gel P-2. Sugar compositions and sequences of the oligosaccharides were identified by exo-splitting with beta-GlcNase, fast atom bombardment mass spectroscopy, and proton NMR spectroscopy. In addition to chitooligosaccharides, (GlcN)2, (GlcN)3, and (GlcN)4, hetero-chitooligosaccharides such as (GlcN)2.GlcNAc.(GlcN)2, GlcN.GlcNAc.(GlcN)3, (GlcN)2.GlcNAc.(GlcN)3, and GlcN.GlcNAc.(GlcN)4 were detected. These results indicate that Bacillus sp. No. 7-M chitosanase is absolutely specific toward the GlcN.GlcN bonds in partially N-acetylated chitosan and at least three GlcN residues were necessary to the hydrolysis of chitosan by chitosanase. 相似文献
13.
Fukuda T Isogawa D Takagi M Kato-Murai M Kimoto H Kusaoke H Ueda M Suye S 《Bioscience, biotechnology, and biochemistry》2007,71(11):2845-2847
To produce chitoorigosaccharides using chitosan, we attempted to construct Paenibacillus fukuinensis chitosanase-displaying yeast cells as a whole-cell biocatalyst through yeast cell-surface engineering. The localization of the chitosanase on the yeast cell surface was confirmed by immunofluorescence labeling of cells. The chitosanase activity of the constructed yeast was investigated by halo assay and the dinitrosalicylic acid method. 相似文献
14.
15.
Laura A. Johnston 《BioEssays : news and reviews in molecular, cellular and developmental biology》1998,20(4):283-286
How does a Drosophila wing grow to the appropriate size and shape? Although a collaboration of cell division with the patterning of cell fates seems obvious, almost nothing is known about how these two processes are coordinated during development. A recent paper1 finds that blocking cell division uncouples cell growth from the cell division cycle, displaying remarkable flexibility in the ability of the wing primordia to achieve the right proportions with fewer than normal cells. BioEssays 20: 283-286, 1998.© 1998 John Wiley & Sons, Inc. 相似文献
16.
分离纯化从烟台近海土壤筛选的链霉菌来源壳聚糖酶,并对其酶学性质进行研究。通过(NH4)2SO4分级沉淀分离得粗酶,透析后经Sephadex G-100柱纯化,得到2种壳聚糖酶(ChA和ChB)。SDS-聚丙烯酰胺凝胶电泳及Sephadex G-75凝胶过滤确定ChA的相对分子质量,研究ChA的最适底物水解条件、热稳定性、水解动力学及金属离子对酶活性影响。结果表明:ChA为单亚基蛋白,相对分子质量为4.16×104,在220和280 nm处呈现两个紫外吸收峰,催化水解壳聚糖的最适pH为5.0~5.5,最适温度为55℃。热稳定性实验表明:30℃温育1 h后酶活为初始酶活的33.3%,40℃温育1 h后酶活为初始酶活的22.2%。ChA的酶促反应初速率为6.2×10-3μmol/(mL.min),Vmax为0.318μmol/(mL.min),Km为1×10-2mg/mL,且对底物表现相对专一性。K+、Na+、Li+、Mg2+、Ca2+、Ba2+Zn2+、Cu2+和Co2+对ChA活力均表现为抑制作用,过渡金属离子Mn2+对酶有激活作用,重金属离子Hg2+、Ag+、Cd2+和Pb2+对酶均有较强的抑制作用。Mn2+和Zn2+的动力学研究表明,Mn2+对酶为混合型激活作用,Zn2+对酶为竞争性抑制作用。 相似文献
17.
AIMS: The objective of this investigation was to evaluate the chitosans produced by several species of fungi. METHODS AND RESULTS: Representatives of four species of filamentous fungi, Aspergillus niger, Rhizopus oryzae, Lentinus edodes and Pleurotus sajo-caju, and two yeast strains, Zygosaccharomyces rouxii TISTR5058 and Candida albicans TISTR5239, were investigated for their ability to produce chitosan in complex media. Fungal chitosan was produced at 10-140 mg g-1 cell dry weight, had a degree of deacetylation of 84-90% and a molecular weight of 2.7 x 104-1.9 x 105 Da with a viscosity of 3.1-6.2 centipoises (cP). CONCLUSIONS: Rhizopus oryzae TISTR3189 was found to be the producer of the highest amounts of chitosan. SIGNIFICANCE AND IMPACT OF THE STUDY: Commercial chitosan could be obtained from Rhizopus mycelia and would have potential applications for medical and agricultural uses. 相似文献
18.
Li Qianqian Wang Tuantuan Ye Yangzhi Guan Shimin Cai Baoguo Zhang Shuo Rong Shaofeng 《Biotechnology letters》2021,43(8):1625-1635
Biotechnology Letters - To establish a temperature-induced chitosanase bacterial cell-surface display system to produce chitooligosaccharides (COSs) efficiently for industrial applications.... 相似文献
19.
Ryan J. MaillouxMary-Ellen Harper 《Free radical biology & medicine》2011,51(6):1106-1115
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms. 相似文献
20.