首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier to diffusion of membrane-associated proteins. Little is known about the role of nucleotide binding in septin function. Here, we show that Cdc3p, Cdc10p, Cdc11p, and Cdc12p all bind GTP and that P-loop and G4 motif mutations affect nucleotide binding and result in temperature-sensitive defects in septin localization and function. Two-hybrid, in vitro, and in vivo analyses show that for all four septins nucleotide binding is important in septin-septin interactions and complex formation. In the absence of complete complexes, septins do not localize to the cortex, suggesting septin localization factors interact only with complete complexes. When both complete and partial complexes are present, septins localize to the cortex but do not form a collar, perhaps because of an inability to form filaments. We find no evidence that nucleotide binding is specifically involved in the interaction of septins with septin-associated proteins.  相似文献   

2.
3.
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Delta cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Delta cla4-75-td, bud6Delta cla4-75-td, and pea2Delta cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Delta mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process.  相似文献   

4.
The septins are a family of GTPases involved in cytokinesis in budding yeast, Drosophila, and vertebrates (see for review). Septins are associated with a system of 10 nm filaments at the S. cerevisiae bud neck, and heteromultimeric septin complexes have been isolated from cell extracts in a filamentous state. A number of septins have been shown to bind and hydrolyze guanine nucleotide. However, the role of GTP binding and hydrolysis in filament formation has not been elucidated. Furthermore, several lines of evidence suggest that not all the subunits of the septin complex are required for all aspects of septin function. To address these questions, we have reconstituted filament assembly in vitro by using a recombinant Xenopus septin, Xl Sept2. Filament assembly is GTP dependent; moreover, the coiled-coil domain common to most septins is not essential for filament formation. Septin polymerization is preceded by a lag phase, suggesting a cooperative assembly mechanism. The slowly hydrolyzable GTP analog, GTP-gamma-S, also induces polymerization, indicating that polymerization does not require GTP hydrolysis. If the properties of Xl Sept2 filaments reflect those of native septin complexes, these results imply that the growth or stability of septin filaments, or both, is regulated by the state of bound nucleotide.  相似文献   

5.
Mitotic yeast (Saccharomyces cerevisiae) cells express five related septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) that form a cortical filamentous collar at the mother-bud neck necessary for normal morphogenesis and cytokinesis. All five possess an N-terminal GTPase domain and, except for Cdc10, a C-terminal extension (CTE) containing a predicted coiled coil. Here, we show that the CTEs of Cdc3 and Cdc12 are essential for their association and for the function of both septins in vivo. Cdc10 interacts with a Cdc3-Cdc12 complex independently of the CTE of either protein. In contrast to Cdc3 and Cdc12, the Cdc11 CTE, which recruits the nonessential septin Shs1, is dispensable for its function in vivo. In addition, Cdc11 forms a stoichiometric complex with Cdc12, independent of its CTE. Reconstitution of various multiseptin complexes and electron microscopic analysis reveal that Cdc3, Cdc11, and Cdc12 are all necessary and sufficient for septin filament formation, and presence of Cdc10 causes filament pairing. These data provide novel insights about the connectivity among the five individual septins in functional septin heteropentamers and the organization of septin filaments.  相似文献   

6.
Septins are conserved proteins found in hetero-oligomeric complexes that are incorporated into distinct structures during cell division and differentiation; yeast septins Cdc3, Cdc10, Cdc11, and Cdc12 form hetero-octamers and polymerize into filaments, which form a "collar" at the mother-bud neck [1]. Posttranslational modifications, nucleotide binding, and protein-protein and protein-lipid interactions influence assembly and disassembly of septin structures [2], but whether individual septins are used repeatedly to build higher-order assemblies was not known. We used fluorescence-based pulse-chase methods to visualize the fate of pre-existing (old) and newly synthesized (new) molecules of two septins, Cdc10 and Cdc12. They were recycled through multiple mitotic divisions, and old and new molecules were incorporated indistinguishably into the collar. Likewise, old and new subunits intermixed within hetero-octamers, indicating that exchange occurs at this organizational level. Remarkably, in meiosis, Cdc10 made during vegetative growth was reutilized to build sporulation-specific structures and reused again during spore germination for budding and during subsequent mitotic divisions. Although Cdc12 also persisted during sporulation, it was excluded from septin structures and replaced by another subunit, Spr3; only new Cdc12 populated the collar of germinating spores. Thus, mechanisms governing septin incorporation are specific to each subunit and to the developmental state of the cell.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae, the lysine acetyltransferase NuA4 has been linked to a host of cellular processes through the acetylation of histone and non-histone targets. To discover proteins regulated by NuA4-dependent acetylation, we performed genome-wide synthetic dosage lethal screens to identify genes whose overexpression is toxic to non-essential NuA4 deletion mutants. The resulting genetic network identified a novel link between NuA4 and septin proteins, a group of highly conserved GTP-binding proteins that function in cytokinesis. We show that acetyltransferase-deficient NuA4 mutants have defects in septin collar formation resulting in the development of elongated buds through the Swe1-dependent morphogenesis checkpoint. We have discovered multiple sites of acetylation on four of the five yeast mitotic septins, Cdc3, Cdc10, Cdc12 and Shs1, and determined that NuA4 can acetylate three of the four in vitro. In vivo we find that acetylation levels of both Shs1 and Cdc10 are reduced in a catalytically inactive esa1 mutant. Finally, we determine that cells expressing a Shs1 protein with decreased acetylation in vivo have defects in septin localization that are similar to those observed in NuA4 mutants. These findings provide the first evidence that yeast septin proteins are acetylated and that NuA4 impacts septin dynamics.  相似文献   

8.
Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide because the now-exposed subunits (Cdc3 or Cdc12, respectively) retain an ability to homodimerize via their so-called G interface, thereby allowing for filament assembly. In such cdc10Δ and cdc11Δ cells, the remaining septins, like wild-type complexes, localize to the cortex at the bud neck and compartmentalize nonseptin factors, consistent with a diffusion barrier composed of continuous filaments in intimate contact with the plasma membrane. Conversely, Cdc10 or Cdc11 mutants that cannot self-associate, but "cap" Cdc3 or Cdc12, respectively, prevent filament formation, block cortical localization, and kill cells.  相似文献   

9.
Gin4, a Nim1-related kinase, is required in budding yeast for localization of the septins and for proper control of daughter cell growth during G2/M. Gin4 becomes hyperphosphorylated when cells enter mitosis, leading to activation of Gin4 kinase activity. In this study, we have used immunoaffinity chromatography to identify proteins that associate with Gin4 during mitosis, with the goal of finding targets of Gin4 kinase activity and proteins that play a role in Gin4 activation. We show that during mitosis Gin4 is assembled into a multiprotein complex that includes Nap1, Bni5, the septins, and at least two molecules of Gin4. The associated Gin4 molecules present in this complex phosphorylate each other, leading to Gin4 hyperphosphorylation. Furthermore, the Shs1 septin present in the complex undergoes Gin4-dependent phosphorylation during mitosis and appears to be a substrate of Gin4 in vitro, suggesting that it is a target of Gin4 kinase activity in vivo. Genetic data support the idea that Shs1 is an important target of Gin4 kinase activity. Association of Gin4 with the septins during mitosis requires Shs1, Nap1, Cla4, Elm1, and the kinase activities of Gin4 and Cdc28. Self-association of Gin4 molecules requires Shs1 but not Cla4 or Nap1. Previous work has suggested that the septins function together as a tight complex, and we found that the majority of the Shs1 in the cell is tightly bound to the other septins Cdc3, Cdc10, Cdc11, and Cdc12. Interestingly, however, Shs1 can bind to Gin4 and induce Gin4 oligomerization under conditions in which the Cdc11 septin does not bind to Gin4, suggesting that Shs1 can function independently of the other septins. Taken together, these findings suggest that highly regulated protein-binding events ensure that the Gin4 kinase is activated only during mitosis and only in association with Shs1, a likely in vivo substrate of Gin4. In addition, these results provide clues to how Gin4 may regulate the localization or function of the septins.  相似文献   

10.
Septins are a family of conserved proteins that are essential for cytokinesis in a wide range of organisms including fungi, Drosophila and mammals. In budding yeast, where they were first discovered, they are thought to form a filamentous ring at the bridge between the mother and bud cells. What regulates the assembly and function of septins, however, has remained obscure. All septins share a highly conserved domain related to those found in small GTPases, and septins have been shown to bind and hydrolyze GTP, although the properties of this domain and the relationship between polymerization and GTP binding/hydrolysis is unclear. Here we show that human septin 2 is phosphorylated in vivo at Ser218 by casein kinase II. In addition, we show that recombinant septin 2 binds guanine nucleotides with a Kd of 0.28 microm for GTPgammaS and 1.75 microm for GDP. It has a slow exchange rate of 7 x 10(-5) s(-1) for GTPgammaS and 5 x 10(-4) s(-1) for GDP, and an apparent kcat value of 2.7 x 10(-4) s(-1), similar to those of the Ras superfamily of GTPases. Interestingly, the nucleotide binding affinity appears to be altered by phosphorylation at Ser218. Finally, we show that a single septin protein can form homotypic filaments in vitro, whether bound to GDP or GTP.  相似文献   

11.
Septins are filament-forming GTPases involved in cytokinesis and cortical organization. In the yeast Saccharomyces cerevisiae, the septins encoded by CDC3, CDC10, CDC11, and CDC12 form a high-molecular-weight complex, localized at the cytoplasmic face of the plasma membrane in the mother-bud neck. While septin function at the cellular level is fairly well understood, progress on structure-function analysis of these proteins has been slow and limited by the lack of large amounts of pure complex. While monomeric septins form apparently non-native aggregates, stable recombinant complexes of two, three, or four yeast septins can be produced by co-expression from bi-cistronic vectors in E. coli. The septin polypeptides show various degrees of saturation with guanine nucleotides in different complexes. The binary core Cdc3p-Cdc12p complex contains no bound nucleotide. While ternary complexes are partially saturated and can bind extraneously added nucleotide with micromolar affinity, only the complete four-component septin complex is fully coordinated with tightly bound GDP/GTP after chromatographic purification. We show here that the nucleotide-binding sites of the septins show drastic changes on formation of higher oligomers. Although the binary core Cdc3p-Cdc12p complex does not form filaments, the ternary and quaternary complexes form bundles of paired filaments. In the case of ternary complexes, filament formation is stimulated by guanine nucleotide, but is not dependent on the presence or absence of the gamma-phosphate.  相似文献   

12.
Septins are a conserved family of GTP-binding proteins that assemble into symmetric linear heterooligomeric complexes, which in turn are able to polymerize into apolar filaments and higher-order structures. In budding yeast (Saccharomyces cerevisiae) and other eukaryotes, proper septin organization is essential for processes that involve membrane remodeling, such as the execution of cytokinesis. In yeast, four septin subunits form a Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 heterooctameric rod that polymerizes into filaments thought to form a collar around the bud neck in close contact with the inner surface of the plasma membrane. To explore septin-membrane interactions, we examined the effect of lipid monolayers on septin organization at the ultrastructural level using electron microscopy. Using this methodology, we have acquired new insights into the potential effect of septin-membrane interactions on filament assembly and, more specifically, on the role of phosphoinositides. Our studies demonstrate that budding yeast septins interact specifically with phosphatidylinositol-4,5-bisphosphate (PIP2) and indicate that the N terminus of Cdc10 makes a major contribution to the interaction of septin filaments with PIP2. Furthermore, we found that the presence of PIP2 promotes filament polymerization and organization on monolayers, even under conditions that prevent filament formation in solution or for mutants that prevent filament formation in solution. In the extreme case of septin complexes lacking the normally terminal subunit Cdc11 or the normally central Cdc10 doublet, the combination of the PIP2-containing monolayer and nucleotide permitted filament formation in vitro via atypical Cdc12-Cdc12 and Cdc3-Cdc3 interactions, respectively.  相似文献   

13.
The septins are a conserved family of GTP-binding, filament-forming proteins. In the yeast Saccharomyces cerevisiae, the septins form a ring at the mother-bud neck that appears to function primarily by serving as a scaffold for the recruitment of other proteins to the neck, where they participate in cytokinesis and a variety of other processes. Formation of the septin ring depends on the Rho-type GTPase Cdc42p but appears to be independent of the actin cytoskeleton. In this study, we investigated further the mechanisms of septin-ring formation. Fluorescence-recovery-after-photobleaching (FRAP) experiments indicated that the initial septin structure at the presumptive bud site is labile (exchanges subunits freely) but that it is converted into a stable ring as the bud emerges. Mutants carrying the cdc42V36G allele or lacking two or all three of the known Cdc42p GTPase-activating proteins (GAPs: Bem3p, Rga1p, and Rga2p) could recruit the septins to the cell cortex but were blocked or delayed in forming a normal septin ring and had accompanying morphogenetic defects. These phenotypes were dramatically enhanced in mutants that were also defective in Cla4p or Gin4p, two protein kinases previously shown to be important for normal septin-ring formation. The Cdc42p GAPs colocalized with the septins both early and late in the cell cycle, and overexpression of the GAPs could suppress the septin-organization and morphogenetic defects of temperature-sensitive septin mutants. Taken together, the data suggest that formation of the mature septin ring is a process that consists of at least two distinguishable steps, recruitment of the septin proteins to the presumptive bud site and their assembly into the stable septin ring. Both steps appear to depend on Cdc42p, whereas the Cdc42p GAPs and the other proteins known to promote normal septin-ring formation appear to function in a partially redundant manner in the assembly step. In addition, because the eventual formation of a normal septin ring in a cdc42V36G or GAP mutant was invariably accompanied by a switch from an abnormally elongated to a more normal bud morphology distal to the ring, it appears that the septin ring plays a direct role in determining the pattern of bud growth.  相似文献   

14.
Iwase M  Luo J  Bi E  Toh-e A 《Genetics》2007,177(1):215-229
In Saccharomyces cerevisiae, five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7) form the septin ring at the bud neck during vegetative growth. We show here that disruption of SHS1 caused cold-sensitive growth in the W303 background, with cells arrested in chains, indicative of a cytokinesis defect. Surprisingly, the other four septins appeared to form an apparently normal septin ring in shs1Delta cells grown under the restrictive condition. We found that Myo1 and Iqg1, two components of the actomyosin contractile ring, and Cyk3, a component of the septum formation, were either delocalized or mislocalized in shs1Delta cells, suggesting that Shs1 plays supportive roles in cytokinesis. We also found that deletion of SHS1 enhanced or suppressed the septin defect in cdc10Delta and cdc11Delta cells, respectively, suggesting that Shs1 is involved in septin organization, exerting different effects on septin-ring assembly, depending on the composition of the septin subunits. Furthermore, we constructed an shs1-100c allele that lacks the coding sequence for the C-terminal 32 amino acids. This allele still displayed the genetic interactions with the septin mutants, but did not show cytokinesis defects as described above, suggesting that the roles of Shs1 in septin organization and cytokinesis are separable.  相似文献   

15.
The assembly of cytoskeletal structures is coupled to other cellular processes. We have studied the molecular mechanism by which assembly of the yeast septin cytoskeleton is monitored and coordinated with cell cycle progression by analyzing a key regulatory protein kinase, Hsl1, that becomes activated only when the septin cytoskeleton is properly assembled. We first identified a regulatory region of Hsl1 that physically associates with the kinase domain and found that it performs an autoinhibitory function both in vivo and in vitro. Several septin binding domains lie near and overlap the inhibitory domain; these are important for Hsl1 function, and binding of two septins, Cdc11 and Cdc12, relieves the autoinhibition imposed by the kinase inhibitory domain in vitro. Our results suggest that binding to multiple septins activates Hsl1 kinase activity, thereby promoting cell cycle progression. The high conservation of Hsl1 indicates that similar mechanisms may monitor cytoskeletal organization in other eukaryotes.  相似文献   

16.
In the yeast Saccharomyces cerevisiae, septins form a scaffold in the shape of a ring at the future budding site that rearranges into a collar at the mother-bud neck. Many proteins bind asymmetrically to the septin collar. We found that the protein Bni4-CFP was located on the exterior of the septin ring before budding and on the mother side of the collar after budding, whereas the protein kinase Kcc4-YFP was located on the interior of the septin ring before budding and moved into the bud during the formation of the septin collar. Unbudded cells treated with the actin inhibitor latrunculin-A assembled cortical caps of septins on which Bni4-CFP and Kcc4-YFP colocalized. Bni4-CFP and Kcc4-YFP also colocalized on cortical caps of septins found in strains deleted for the genes encoding the GTPase activating proteins of Cdc42 (RGA1, RGA2, and BEM3). However, Bni4-CFP and Kcc4-YFP were still partially separated in mutants (gin4, elm1, cla4, and cdc3-1) in which septin morphology was severely disrupted in other ways. These observations provide clues to the mechanisms for the asymmetric localization of septin-associated proteins.  相似文献   

17.
We show here that affinity-purified Saccharomyces cerevisiae septin complexes contain stoichiometric amounts of guanine nucleotides, specifically GTP and GDP. Using a (15)N-dilution assay read-out by liquid chromatography-tandem mass spectrometry, we determined that the majority of the bound guanine nucleotides do not turn over in vivo during one cell cycle period. In vitro, the isolated S. cerevisiae septin complexes have similar GTP binding and hydrolytic properties to the Drosophila septin complexes (Field, C. M., al-Awar, O., Rosenblatt, J., Wong, M. L., Alberts, B., and Mitchison, T. J. (1996) J. Cell Biol. 133, 605-616). In particular, the GTP turnover of septins is very slow when compared with the GTP turnover for Ras-like GTPases. We conclude that bound GTP and GDP play a structural, rather then regulatory, role for the majority of septins in proliferating cells as GTP does for alpha-tubulin.  相似文献   

18.
Momany M  Zhao J  Lindsey R  Westfall PJ 《Genetics》2001,157(3):969-977
Members of the septin gene family are involved in cytokinesis and the organization of new growth in organisms as diverse as yeast, fruit fly, worm, mouse, and human. Five septin genes have been cloned and sequenced from the model filamentous fungus A. nidulans. As expected, the A. nidulans septins contain the highly conserved GTP binding and coiled-coil domains seen in other septins. On the basis of hybridization of clones to a chromosome-specific library and correlation with an A. nidulans physical map, the septins are not clustered but are scattered throughout the genome. In phylogenetic analysis most fungal septins could be grouped with one of the prototypical S. cerevisiae septins, Cdc3, Cdc10, Cdc11, and Cdc12. Intron-exon structure was conserved within septin classes. The results of this study suggest that most fungal septins belong to one of four orthologous classes.  相似文献   

19.
Septin proteins bind GTP and heterooligomerize into filaments with conserved functions across a wide range of eukaryotes. Most septins hydrolyze GTP, altering the oligomerization interfaces; yet mutations designed to abolish nucleotide binding or hydrolysis by yeast septins perturb function only at high temperatures. Here, we apply an unbiased mutational approach to this problem. Mutations causing defects at high temperature mapped exclusively to the oligomerization interface encompassing the GTP-binding pocket, or to the pocket itself. Strikingly, cold-sensitive defects arise when certain of these same mutations are coexpressed with a wild-type allele, suggestive of a novel mode of dominance involving incompatibility between mutant and wild-type molecules at the septin–septin interfaces that mediate filament polymerization. A different cold-sensitive mutant harbors a substitution in an unstudied but highly conserved region of the septin Cdc12. A homologous domain in the small GTPase Ran allosterically regulates GTP-binding domain conformations, pointing to a possible new functional domain in some septins. Finally, we identify a mutation in septin Cdc3 that restores the high-temperature assembly competence of a mutant allele of septin Cdc10, likely by adopting a conformation more compatible with nucleotide-free Cdc10. Taken together, our findings demonstrate that GTP binding and hydrolysis promote, but are not required for, one-time events—presumably oligomerization-associated conformational changes—during assembly of the building blocks of septin filaments. Restrictive temperatures impose conformational constraints on mutant septin proteins, preventing new assembly and in certain cases destabilizing existing assemblies. These insights from yeast relate directly to disease-causing mutations in human septins.  相似文献   

20.
Septins constitute a family of guanine nucleotide-binding proteins that were first discovered in the yeast Saccharomyces cerevisiae but are also present in many other eukaryotes. In yeast they congregate at the bud neck and are required for cell division. Their function in metazoan cells is uncertain, but they have been implicated in exocytosis and cytokinesis. Septins have been purified from cells as hetero-oligomeric filaments, but their mechanism of assembly is unknown. Further studies have been limited by the difficulty in expressing functional septin proteins in bacteria. We now show that stable, soluble septin heterodimers can be produced by co-expression from bicistronic vectors in bacteria and that the co-expression of three septins results in their assembly into filaments. Pre-assembled dimers and trimers bind guanine nucleotide and show a slow GTPase activity. The assembly of a heterodimer from monomers in vitro is accompanied by GTP hydrolysis. Borg3, a downstream effector of the Cdc42 GTPase, binds specifically to a septin heterodimer composed of Sept6 and Sept7 and to the Sept2/6/7 trimer, but not to septin monomers or to other heterodimers. Septins associate through their C-terminal coiled-coil domains, and Borg3 appears to recognize the interface between these domains in Sept6 and Sept7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号