首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Paleoecology of benthic community replacement   总被引:3,自引:0,他引:3  
The literature of community paleoecology is filled with examples in which long-term environmentally-controlled faunal transitions are misidentified as forms of ecologic succession. This has obscured a fundamental community-level process - community replacement - involving gradual to abrupt substitution of one benthic community for another as a result of subtle to sharp changes in habitats over subevolutionary time. In gradually changing environments, replacement takes place through conformational reorganization of species-abundance distributions within established communities, yielding sequences of slightly different fossil associations. Environments that change very rapidly drastically feature a different type of community replacement involving species turnover, wherein environmental tolerance limits of community members are closely approached or exceeded. Paleoecologists should be alert to the strong likelihood that many temporal transitions involving autochthonous fossil associations are, in fact, community replacement sequences.  相似文献   

2.
Glacier chronosequences are important sites for primary succession studies and have yielded well‐defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant‐associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root‐associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non‐replacement). At both sites, the root‐associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal community's successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional‐replacement successional trajectory, and the arctic site displayed a directional‐non‐replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root‐associated fungi. The need for further replicated study, including in other host species, is emphasized.  相似文献   

3.
Nick Cutler 《Plant Ecology》2010,208(1):123-136
Trajectories of plant primary succession are commonly inferred from temporal changes in non-spatially explicit metrics that characterise the whole sampling area with a single statistic (e.g. community diversity). However, the derivation of these metrics is affected by the presence of spatial structure (patchiness) in vegetation. The emergence of spatial patchiness during succession is therefore likely to have an impact on attempts to infer the rate and direction of vegetation development. This study examines the impact of patchiness on inferred developmental trajectories by comparing a non-spatial analysis of long-term primary succession with a spatially explicit analysis of the same data. The data used in the analysis were collected from an 850-year-old chronosequence of 7 lava flows in southern Iceland. The non-spatial analysis captured broad developmental trends, including an overall increase in community diversity with time, and a split between early pioneer communities (sites <150-year-old) dominated by cryptogams and later assemblages (sites older than ≈150 years) where vascular plants were more important. However, the non-spatial analysis missed key community processes apparent in the spatially explicit analysis, including divergence in vegetation development related to metre-scale topographic differences. The results of this study emphasise the need for spatially explicit, multi-scale studies of vegetation development, both in the inference of past vegetation dynamics, and in modelling the response of spatially patchy vegetation to future environmental change.  相似文献   

4.
The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.  相似文献   

5.
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species‐ and individual‐level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between‐plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late‐successional stages, there was high presence‐/absence‐based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.  相似文献   

6.
广西阳朔岩溶植被演替过程种群变化及物种多样性   总被引:8,自引:0,他引:8  
欧祖兰  李先琨  苏宗明 《生态科学》2005,24(4):295-297,309
采用时空替代法研究广西阳朔岩溶植被在演替过程中的种群变化和物种多样性。研究表明,随着演替的进展,耐荫种群增加,乔木种群增加,优势种的更替呈现出一定的连续性,后一演替阶段的优势种往往已经隐含在前一演替阶段中;物种丰富度随演替进展表现出草丛<落叶阔叶林<灌丛<常绿落叶阔叶混交林的趋势;灌木层的物种丰富度在各演替阶段中均是最高的;在各演替阶段中,落叶阔叶林阶段的群落均匀度均表现为最大。  相似文献   

7.
Ellis  J.I.  Schneider  D.C.  Thrush  S.F. 《Hydrobiologia》2000,440(1-3):379-391
Demonstrating spatial or temporal gradients of effects on macrobenthic communities can be a useful way of providing strong empirical evidence of natural or anthropogenic disturbance. Gradient designs for environmental assessment are sensitive to change for point source data, enabling the scale of the effects of a disturbance to be readily identified. If the spatial scale that is sampled from the point source is adequate, problems of selecting control sites can be avoided. However, sources of spatial variation in macrobenthic communities, which are not related to the impact, can confound the use of gradient designs. This can occur if the natural spatial structure overlaps that of the gradient and cannot be identified either as a location or environmental covariable. The ability to detect point source impacts using a gradient design against natural spatial variability was tested using benthic macrofaunal data collected from Manukau Harbour, New Zealand. Treated sewage wastewater is discharged into the north-west area of the Manukau Harbour. Sandflats in the vicinity of the outfall are also subject to physical disturbance from wind-waves and strong tides. Ordination techniques and the testing of a priori predictions were used to try and separate the relative effects of organic and physical disturbance on the benthic communities. While the occurrence of other environmental disturbances along a gradient of anthropogenic disturbance makes interpretation of community pattern more difficult, the use of a gradient sampling layout, ordination analysis and the testing of a priori predictions enabled impacts of the anthropogenic and natural environmental disturbances to be interpreted. Gradient designs, therefore, provide a method of assessing complex impacts that operate over broad spatial and temporal scales.  相似文献   

8.
Classical old‐field succession studies focused on vegetation changes after the abandonment of annual croplands or on succession after the elimination of cultivated crops. Perennial‐crop‐mediated succession, where fields are initially covered by perennial crops, reveals alternative aspects of old‐field succession theories. We tested the validity of classical theories of old‐field succession for perennial‐crop‐mediated succession. We formulated the following hypotheses: (1) functional diversity increases with increasing field age; (2) resource acquisition versus conservation trade‐off shifts toward conservation at community level during the succession; (3) the importance of spatial and temporal seed dispersal decreases during the succession; and (4) competitiveness and stress‐tolerance increases and ruderality decreases at community level during the succession. We studied functional diversity, trait distributions and plant strategies in differently aged old‐fields using chronosequence method. We found increasing functional richness and functional divergence, but also unchanged or decreasing functional evenness. We detected a shift from resource acquisition to resource conservation strategy of communities during the succession. The role of spatial and temporal seed dispersal was found to be important not only at the initial but also at latter successional stages. We found an increasing stress‐tolerance and a decreasing ruderality during succession, while the competitiveness remained unchanged at the community level. Despite the markedly different starting conditions, we found that classical and perennial‐crop‐mediated old‐field successions have some similarities regarding the changes of functional diversity, resource acquisition versus conservation trade‐off, and seed dispersal strategies. However, we revealed also the subsequent differences. The competitive character of communities remained stable during the succession; hence, the initial stages of perennial‐crop‐mediated succession can be similar to the middle stages of classical old‐field succession. Moreover, the occupied functional niche space and differentiation were larger in the older stages, but resources were not effectively utilized within this space, suggesting that the stabilization of the vegetation requires more time.  相似文献   

9.
Surface mining for coal represents one of the dominant forms of anthropogenic disturbance to forests of the eastern United States. Reclamation methods adopted under federal law in the 1970s have led to a state of arrested succession, failing to achieve pre‐disturbance conditions. New methods of reclamation have been proposed with the goal of returning mined land to its former forested state through the use of compaction reducing techniques that significantly increase fine‐scale heterogeneity. The Forestry Reclamation Approach creates topographic heterogeneity by loosely dumping overburden material into large piles to serve as a tree‐planting medium. We examined the effect of fine‐scale topographic relief, soil physical properties, and reclamation method on early plant community development on a mine site in eastern Ohio. We sampled plots at four microtopographic positions and three distances from the remaining forest edge in both experimentally and traditionally reclaimed areas of a surface mine. Multivariate analysis of variance (ANOVA) on distance matrices indicated significant differences in plant community composition among microtopographic positions and reclamation methods. Microtopographic positions also exhibited significant differences in measured soil properties significantly affecting plant community composition. Plots in the traditionally reclaimed areas had no woody plant colonization, indicating arrested succession common to sites reclaimed using traditional methods. Our results suggest that the creation of topographic heterogeneity at the time of reclamation markedly accelerates ecological succession and promotes enhanced plant community diversity. Expanded application of the methods used here could allow for a faster return to the former forested state of mined lands than traditional reclamation methods.  相似文献   

10.
A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out from an empirical perspective and in specific ecological settings or contexts. Belowground interactions operate at different spatial and temporal scales. Due to the relatively low mobility and high survival of organisms in the soil, plants have longer lasting legacy effects belowground than aboveground. Our current challenge is to understand how aboveground–belowground biotic interactions operate across spatial and temporal scales, and how they depend on, as well as influence, the abiotic environment. Because empirical capacities are too limited to explore all possible combinations of interactions and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground–belowground approach offers perspectives for enhancing ecological understanding, namely succession, agro-ecosystems, biological invasions and global change impacts on ecosystems. In plant succession, differences in scales between aboveground and belowground biota, as well as between species interactions and ecosystem processes, have important implications for the rate and direction of community change. Aboveground as well as belowground interactions either enhance or reduce rates of plant species replacement. Moreover, the outcomes of the interactions depend on abiotic conditions and plant life history characteristics, which may vary with successional position. We exemplify where translation of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects of global change on community re-organisation and ecosystem processes.  相似文献   

11.
12.
Environmental factors controlling the distribution of shallow-water gorgonians of Puerto Rico were inferred from a Reciprocal Averaging ordination analysis. The data set included several samples taken before and after the passage of Hurricane David and the mass mortality of the sea urchin Diadema antillarum. We could infer only a single environmental gradient associated with the distribution of gorgonians. Stations at opposite extremes of this gradient were characterized by combinations of high wave action with low topographic relief, or low wave action with high topographic relief. This gradient was also associated with sediment transport across the bottom (bedload). A detailed examination of ordination results in relation to Hurricane David and the Diadema mortality indicated that sediment transport, rather than water movement and topographic relief, is more directly related to the distribution of shallow-water gorgonians.  相似文献   

13.
Questions: The early phases of primary succession are governed by chance events and dispersal‐related processes in an environment that is largely free of competition. Thus, the predictability of vegetation patterns using environmental site factors can be expected to be low and spatial autocorrelation to be high. We asked whether the match between vegetation and environment becomes better in the course of succession, and whether vegetation types shift their realized niche with time. Location: Lignite mining region in Central Germany, the post‐mining landscape “Goitzsche” (Saxony‐Anhalt). Methods: Vegetation types were mapped in a 10‐m grid (total area 4.8 ha), starting in 1995, at 3‐year intervals until 2007. We used a temporal comparison of habitat models. We applied: GLS regression to partition the variation in coverage of vegetation types into environmental (soil pH) and spatial components; logistic regression to model the presence/absence of vegetation types along a soil acidity gradient; and autologistic regression allowing for soil acidity and neighbourhood effects. Results: For most vegetation types, the proportion of variation explained by space was high but declined during succession. The outcome of autologistic models suggests that soil acidity often plays a minor role compared to neighbourhood effects in the earlier phase of succession than 12 years later. For four vegetation types, the pH range in which the type was expected to be dominant clearly became smaller with time. These trends support the view that the role of processes related to chance and dispersal decrease with time, while those related to environmental filtering mediated by biotic interactions increase. Conclusions: We conclude that temporal comparisons of spatially explicit habitat models provide insights into changing biotic community processes and their effects on habitat specificity of species or their communities. Thus, this approach may be particularly important for analysis of ecological systems that are not in equilibrium with their environmental drivers.  相似文献   

14.
Besides spatial heterogeneity, another important component of the diversity of protist communities is the variation in species assemblages through time. Despite its importance, temporal turnover of benthic communities has been studied to a lesser extent than spatial heterogeneity has. In this study, we examine the desmid assemblages on small spatial scale in relation to the spatial, temporal, and environmental parameters. The samples were collected within two different types of peatland localities in the Czech Republic over 3 years. The differences in species composition between samples were mainly correlated with the geographic distance, while the effects of the environmental and temporal variables were much weaker. Since the spatial heterogeneity of the assemblages was not induced by the variation of the environmental factors or by the restricted dispersal ability at such a small spatial scale, we assume that both the temporal stability and strong spatial autocorrelation might have been the result of a priority effect, with subsequent monopolization of resources. Stochasticity in colonization can introduce noise into the match between community composition and environmental conditions, which may result in stronger effect of the spatial parameters on the community structure.  相似文献   

15.
Patterns and drivers of succession provide insight into the mechanisms that govern community assembly, but remain poorly understood for microbial communities. We assess whether successional trends of trees are mirrored by foliar endophyte communities of three tree species across a deterministic woody successional gradient. Additionally, we test the relative contribution of abiotic predictors, biotic factors, and spatial distance between sites in predicting composition and richness of endophyte communities. Unlike the tree community, endophyte communities showed no consistent evidence of deterministic succession. Host identity was the most important factor structuring endophyte community composition; within hosts, spatial distance from the indigenous forest and between samples was important, while environmental predictors had small and inconsistent effects. Much variation in endophyte composition remained unexplained. In contrast, endophyte richness was well-explained by predictor variables. Host identity was most important in predicting endophyte richness, while the effect of other predictors on richness differed between host species. We conclude that deterministic succession in trees did not result in deterministic succession in endophyte communities; instead community assembly was most strongly influenced by host identity; while within hosts, neutral processes may be more important for endophyte assembly than deterministic factors.  相似文献   

16.
Abstract. The Vava'u island group, Tonga, comprises ca. 60 limestone islands on a single submarine platform overlain with rich soils derived from tephra deposits from nearby volcanic islands. The island group has moderate topographic relief (215 m) and is characterized by plateaus and steep cliffs. Humans settled in Tonga ca. 3000 yr ago and have exploited the flatter terrain for agriculture since that time. We conducted the first survey of forest composition in Vava'u, sampling remnant patches of late-successional forest as well as stands in various stages of secondary succession following agricultural abandonment. Plant species composition did not vary greatly with elevation over this short gradient, in contrast with patterns found on‘Eua, a higher island in Tonga. The most significant environmental gradient affecting species composition was coastal or maritime influence. However, the greatest variation in species composition and structure appeared to be related to species turnover during secondary succession, and we hypothesize a sequence of species replacements. Secondary forest begins to resemble late-successional forest in 30–50 yr in terms of structure and native species richness and therefore is of significant conservation value.  相似文献   

17.
Aim To develop a landscape‐level model that partitions variance in plant community composition among local environmental, regional environmental, and purely spatial predictive variables for pyrogenic grasslands (prairies, savannas and woodlands) throughout northern and central Florida. Location North and central Florida, USA. Methods We measured plant species composition and cover in 271 plots throughout the study region. A variation‐partitioning model was used to quantify components of variation in species composition associated with the main and interaction effects of soil and topographic variables, climate variables and spatial coordinates. Partial correlations of environmental variables with community variation were identified using direct gradient analysis (redundancy analysis and partial redundancy analysis) and Monte Carlo tests of significance. Results Community composition was most strongly related to edaphic variables at local scales in association with topographic gradients, although geographically structured edaphic, climatic and pure spatial effects were also evident. Edaphic variables explained the largest portion of total variation explained (TVE) as a main effect (48%) compared with the main effects of climate (9%) and pure spatial factors (9%). The remaining TVE was explained by the interaction effect of climate and spatial factors (13%) and the three‐way interaction (22%). Correlation analyses revealed that the primary compositional gradient was related to soil fertility and topographic position corresponding to soil moisture. A second gradient represented distinct geographical separation between the Florida panhandle and peninsular regions, concurrent with differences in soil characteristics. Gradients in composition corresponded to species richness, which was lower in the Florida peninsula. Main conclusions Environmental variables have the strongest influence on the species composition of Florida pyrogenic grasslands at both local and regional scales. However, the limited distributions of many plant taxa suggest historical constraints on species distributions from one physiographical region to the other (Florida panhandle and peninsula), although this pattern is partially confounded by regionally spatially structured environmental variables. Our model provides insight into the relative importance of local‐ and regional‐scale environmental effects as well as possible historical constraints on floristic variation in pine‐dominated pyrogenic grasslands of the south‐eastern USA.  相似文献   

18.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization.  相似文献   

19.
1. The succession of a phytoplankton community was investigated through an intensive period of sampling and related to physical, chemical and biological conditions sampled at an equal, or higher, temporal resolution. 2. Phytoplankton samples were taken on a weekly basis from June to September 2004 and analysed for diversity, species composition, and contribution of different functional groups to total biomass. Physical and chemical data were collected on the sampling days, and physical environmental factors were also logged continuously throughout the period by automatic measuring stations. This continuous logging allowed community structure to be compared with physical data averaged over periods from a day to a week before each sampling date. 3. The Schmidt stability of the lake, a measure of the strength of stratification calculated from thermal data, showed a negative correlation with phytoplankton species diversity. This is consistent with the hypothesis that mixing was preventing exclusion by species that would otherwise dominate in stratified conditions. 4. At a functional level, stress tolerant (S‐type) species dominated during the stratified summer conditions, with small, colonising species (C types) and ruderal, disturbance tolerant species (R types) contributing little to the overall biomass. Of the stress tolerant species, the faster growing (SC) phytoplankters were significantly favoured by more stable, stratified conditions and higher solar radiation. Increased abundance of this group resulted in decreased species diversity. Correlations were generally strongest when using the 6‐ to 7‐day averaged physical data, stressing the importance of continuous measurements of these drivers in phytoplankton studies.  相似文献   

20.
Benthic marine fossil associations have been used in paleontological studies as multivariate environmental proxies, with particular focus on their utility as water depth estimators. To test this approach directly, we evaluated modern marine invertebrate communities along an onshore-offshore gradient to determine the relationship between community composition and bathymetry, compare the performance of various ordination techniques, and assess whether restricting community datasets to preservable taxa (a proxy for paleontological data) and finer spatial scales diminishes the applicability of multivariate community data as an environmental proxy. Different indirect (unconstrained) ordination techniques (PCoA, CA, DCA, and NMDS) yielded consistent outcomes: locality Axis 1 scores correlated with actual locality depths, and taxon Axis 1 scores correlated with actual preferred taxon depths, indicating that changes in faunal associations primarily reflect bathymetry, or its environmental correlatives. For datasets restricted to taxa with preservable hard parts, heavily biomineralized mollusks, open ocean habitats, and a single onshore-offshore gradient, the significant correlation between water depth and Axis 1 was still observed. However, for these restricted datasets, the correlation between Axis 1 and bathymetry was reduced and, in most cases, notably weaker than estimates produced by subsampling models. Consistent with multiple paleontological studies, the direct tests carried out here for a modern habitat using known bathymetry suggests that multivariate proxies derived from marine benthic associations may serve as a viable proxy of water depth. The general applicability of multivariate paleocommunity data as an indirect proxy of bathymetry is dependent on habitat type, intrinsic ecological characteristics of dominant faunas, taxonomic scope, and spatial and temporal scales of analysis, highlighting the need for continued testing in present-day depositional settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号