首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of Ia antigens on the surfaces of lymph node lymphocytes of several mouse strains was investigated using indirect immunoferritin labeling and electron microscopy. The immunoferritin labeling results agreed with results of cytotoxic tests in strain distribution of reactivity, proportion of cells showing label, and cell populations reacting. Capping was induced by increased incubation temperature but conditions for Ia antigen mobilization varied somewhat between the two anti-Ia antisera employed. Uncapped specimens generally showed a denser, more evenly distributed antigen coating than is the case for H-2 antigens labeled by the same indirect immunoferritin method.  相似文献   

2.
The recent development of a reliable murine T lymphocyte proliferation assay has facilitated the study of T lymphocyte function in vitro. In this paper, the effect of anti-histocompatibility antisera on the proliferative response was investigated. The continuous presence of anti-Ia antisera in the cultures was found to inhibit the responses to the antigens poly (Glu58 Lys38 Tyr4) [GLT], poly (Tyr, Glu) ploy D,L Ala-poly Lys [(T,G)-A--L], poly (Phe, Glu)-poly D,L Ala-poly Lys [(phi, G)-A--L], lactate dehydrogenase H4, staphylococcal nuclease, and the IgA myeloma protein, TEPC 15. The T lymphocyte proliferative responses to all of these antigens have previously been shown to be under the genetic control of major histocompatibility-linked immune response genes. The anti-Ia antisera were also capable of inhibiting proliferative responses to antigens such as PPD, to which all strains respond. In contrast, antisera directed solely against H-2K or H-2D antigens did not give significant inhibition. Anti-Ia antisera capable of reacting with antigens coded for by genetically defined subregions of the I locus were capable of completely inhibiting the proliferative response. In the two cases studied, GLT and (T,G)-A--L, an Ir gene controlling the T lymphocyte proliferative response to the antigen had been previously mapped to the same subregion as that which coded for the Ia antigens recognized by the blocking antisera. Finally, in F1 hybrids between responder and nonresponder strains, the anti-Ia antisera showed haplotype-specific inhibition. That is, anti-Ia antisera directed against the responder haplotype could completely block the antigen response controlled by Ir genes of that haplotype; anti-Ia antisera directed against Ia antigens of the nonresponder haplotype gave only partial or no inhibition. Since this selective inhibition was reciprocal depending on which antigen was used, it suggested that the mechanism of anti-Ia antisera inhibition was not cell killing or a nonspecific turning off of the cell but rather a blockade of antigen stimulation at the cell surface. Furthermore, the selective inhibition demonstrates a phenotypic linkage between Ir gene products and Ia antigens at the cell surface. These results, coupled with the known genetic linkage of Ir genes and the genes coding for Ia antigens, suggest that Ia antigens are determinants on Ir gene products.  相似文献   

3.
Congenic anti-Ia antisera were used to bind radiolabelled Ia antigens from cells of various strains of mice of knownH-2 haplotype. The results indicate that Ia antigens are proteins of molecular weight 30,000 to 35,000 daltons. The Ia antigens are distinct from known H-2 antigens as judged by independent immunoprecipitation as well as by molecular weight. Ia antigens are synthesized by, and are present on the surface of lymphoid cells as evidenced by incorporation studies using3H-leucine and enzymatic radioiodination of cells, respectively. Tissue distribution of cell surface Ia suggests that Ia antigens are on B cells. Ia antigens were detected in the incubation media of3H-leucine labeled splenocytes suggesting that antigens may be secreted.  相似文献   

4.
Natural killer activity of mouse spleen cells toward a human myeloid leukemia cell line, K562, can be enhanced by alloantisera directed against individual antigens in the H-2 region. By using a panel of 13 antisera (8 directed against antigens in the K and D regions and 5 directed against antigens in the I region) and four strains of mice (C57BL/6J, CBA, DBA/2, and A/J) it was found that certain antisera would stimulate target cell lysis by spleen cells only if the antisera had specificity for antigens which were a part of the haplotype represented on the spleen NK effector cells. Anti Ia antisera could stimulate the anti K562 NK activity of nude mouse spleen cells which lack mature T cells. Depletion of B cells and macrophages from nude spleen cells, by passing through a nylon-wool column also did not abolish the effect of anti-Ia antiserum. It appears likely therefore that the anti-Ia antibodies exert this effect directly on NK cells and that Ia antigens may be expressed on NK cells. Since the antisera directed against different antigens in H-2 complex irrespective of subregion specificity (K, D, or I) stimulated the NK activity of mouse spleen cells, the phenomenon offered an interesting method for testing the presence of a given alloantigen on mouse spleen cells. Log-dose response curves for the augmentation of lysis induced by appropriate alloantisera were linear over a dilution range of 1:320 to 1:5120. By using the dose-response curves, potency ratios of two preparations of antisera (directed against antigen 33 of the K region) could be successfully determined. Besides the K562 cell line, many human lymphoblastoid cell lines could also be used as target cells in this assay system.  相似文献   

5.
Detection of hybrid (combinatorial) Ia antigens using parent anti-F1 sera   总被引:2,自引:0,他引:2  
Ia specificities 22 and 23 were initially identified by using conventional alloantisera and were mapped to the I-E subregion of k and d haplotypes on the basis of their reactivity with selected recombinants. Recently we found that Ia 22 and 23 are hybrid determinants on the basis of their expression on selected F1 cells, but absence from both parental cells. Initial attempts to detect hybrid Ia antigens by immunizing parents with F1 cells were unsuccessful. By utilizing lipopolysaccharide (LPS)-stimulated F1 spleen lymphoblasts as immunogens, 1 of the parents as recipient and the other parent cells for absorption of antisera, specific anti-Ia.22 and 23 antibodies were produced. The specificity of these parent anti-F1 sera was confirmed by cytotoxic and immunoprecipitation analyses.  相似文献   

6.
Hybrid cell lines were established by fusion between keyhole limpet hemocyanin(KLH) binding T cells of A/J mice and an AKR T cell tumor line, BW5147. Hybrids were selected for the presence of Ia antigen and KLH-specific augmenting activity of their extracts in the secondary antibody response. The detailed phenotypic and functional analysis of 1 of these clones, FL10, is reported here. The hybrid was positive for both Thy1.1 and Thy1.2 antigens and possessed the Lyt-1+,2-,3- phenotype. Both VH and Ia determinants were detected on their cell surface. The IA locus was mapped in the I-A subregion, but the Ia specificities were serologically distinct from those of B cell Ia antigen. This was demonstrated by the fact that anti-Ia antiserum preabsorbed with B cells could react with the hybrid cells, whereas none of the monoclonal anti-Ia specific for private and public determinations of Iak could. The extract from the cell line specifically augmented the in vitro secondary antibody response against dinitrophenylated KLH, and this activity was removed by absorption with antigen and conventional anti-Ia antisera. The results indicate that the cell line, FL10, carries Ia antigen unique to the T cell, which is associated with the antigen-specific augmenting molecule.  相似文献   

7.
Well-perfused adult DA kidneys were enzymatically dispersed under conditions which do not affect the expression of cell surface major histocompatibility antigens. The kidney cell suspensions were separated via sedimentation at unit gravity into three fractions: I, rapidly sedimenting (>6.5 mm/hr) enriched for kidney tubular and glomerular cells and depleted of passenger leukocytes (76 and 8%, respectively); II, intermediate (5.1–6.0 mm/hr) mixed population equivalent to the unseparated kidney cell suspension (52% tubular and glomerular cells, 20% endothelial cells, and 28% passenger leukocytes); and III, slow sedimenting (<5.0 mm/hr) enriched for passenger leukocytes (63%). The three isolated fractions were analyzed for their ability to accelerate allograft rejection in the “primed heart rejection assay.” The cells in fraction I were unable to reduce heart allograft survival, while the cells from fraction III reduced it significantly. Cells from fraction II were intermediary effective. The results are in agreement with the hypothesis that the urine-producing apparatus of rat kidney is relatively nonimmunogenic, while the main stimulus for graft rejection is provided by the “passenger” cell component.  相似文献   

8.
The capping of Ia antigens does not induce redistribution of Fc receptors (FcR) on B lymphocytes. This rules out the possibility of a unidirectional association between Ia and FcR such as has been reported to link Ig and FcR. Ia-capping was achieved with hapten-sandwich antibodies devoid of Fc regions: hapten-conjugated Fab anti-Ia followed by (Fab')2 anti-hapten antibody. Three different immune complex systems were used to label FcR. With fluorescent double labeling, Ia and FcR were readily distinguished. The independent labeling and surface mobility of Ia and FcR are considered in connection with reports of the inhibition of FcR by anti-Ia antibodies.  相似文献   

9.
Human T lymphocytes that proliferate in the presence of conditioned medium from PHA-stimulated allogeneic peripheral blood cells were shown to express IPA antigens after the 8th culture day. Ia antigens as detected by xenogeneic antisera were present on 80 to 90% of the cultured cells which were also strongly reactive with xenogeneic antisera defining a human T cell antigen and formed E rosettes. Control cultures with PHA or no conditioned medium expressed T cell but not Ia antigens. These cultured T cells also express the same HLA-DRw determinants as the B cells of the donor they were derived from. Absorption of xenogeneic Ia, and HLA-DRw alloantisera with cultured T cells completely removed the reactivity of these sera for enriched peripheral blood B lymphocytes from normal donors.  相似文献   

10.
Previously published data suggest that both xenogeneic and allogeneic anti-Ia sera can recognize carbohydrate-defined antigenic determinants on the surface of lymphocytes. There is also evidence, based on studies with allogeneic anti-Ia sera, that protein-defined Ia antigens exist. In this paper the relationship between these two types of Ia antigen was examined. It was found that in capping studies, the allogeneic anti-Ia serum could cap off the antigens recognized by the xenogeneic antiserum, whereas the xenogeneic antibodies could, at least partially, clear the surface of lymphocytes of Ia antigens detected by the allogeneic antibodies. On the other hand, when immunoprecipitates of radioiodinated cell-surface antigens were examined by SDS-polyacrylamide-gel electrophoresis, it was found that the xenogeneic anti-Ia serum did not immunoprecipitate any labeled material. In contrast, the allogeneic antiserum immunoprecipitated a labeled molecule which corresponded to the protein-defined Ia antigen described by others. Finally, it was shown that serum Ia antigens could be bound by either mouse or rabbit anti-Ia antibody, and this binding blocked any further reactivity with either serum. These results were interpreted as suggesting that two separate classes of Ia antigen molecule appear on the lymphocyte surface-one class has carbohydrate-defined antigenic specificities and the other has protein-defined determinants. Allogeneic anti-Ia sera contain antibodies against both these antigenic systems, whereas xenogeneic sera recognize only the carbohydratedefined series. The genetic implications of this interpretation are discussed.  相似文献   

11.
The production of xenogeneic anti-Ia serum against Ia antigens in serum has been previously described in the mouse and we now describe the production of xenogeneic anti-human Ia antisera using similar methods. With an indirect resetting technique, Ia-like antibodies were shown to react with the majority of B cells (95%), a subpopulation of T cells, with carbonyl iron adherent cells, and with some EIg null cells, but there was no reaction with red cells and platelets. These reactions were the same as those obtained with DRW antisera using cytotoxicity testing. In addition, antigens detected with xenogeneic antisera were also found in serum, where they were found to exist in a low molecular weight, dialyzable form. By the selective removal of different cell surface markers by cocapping, no association could be found with the specifities detected with the xenogeneic anti-Ia antisera and with surface Ig, 2-microglobulin, or HLA-A and B specificities. Alloantibodies to DRW specificities (but not HLA-A, B specificities) were able to specifically block the binding of the rabbit anti-Ia antibodies to B cells, and reciprocal blocking of rabbit antisera by DRW antibodies was also observed. Several xenogenic antisera were produced by immunizing rabbits with the serum of different individuals. Each antiserum was shown to contain a number of different specificities, as they gave different reaction patterns with different individuals when testing was done both directly and by absorption. These xenogeneic anti-la sera also segregated in a family with HLA-A and B specificities. The detection of a polymorphic antigenic system segregating with the HLA complex, distinct from HLA-A and B specificities, and whose antigens occur predominantly on B cells is therefore described. Because of the similarity of the reactions of the xenogeneic antisera in man to those found in the mouse, and because of the close relationship to the DRW specificities, the system has been provisionally called the H.Ia system.Abbreviations used in this paper AET 2-aminoethyl isothiouronium bromide - 2-M -2 microglobulin - BSA Bovine serum albumin - H.Ia Human Ia - HuRBC Human red blood cells - Ig Immunoglobulin - Ir Immune response - MHC Major histocompatibility complex - MLR Mixed lymphocyte reaction - NHS Normal human serum - NMS Normal mouse serum - PBL Peripheral blood lymphocytes - PBS Phosphate-buffered saline - RAHIg Rabbit anti-human immunoglobulin - RASIg Rabbit anti-sheep immunoglobulin - RFC Rosette-forming cells - SAHIg Sheep anti-human immunoglobulin - SARIy Sheep anti-rabbit immunoglobulin - SRBC Sheep red blood cells  相似文献   

12.
We have previously demonstrated that nonimmune guinea pig T lymphocytes could be specifically sensitized with TNP-modified allogeneic macrophages after eliminating the alloreactive T cells with bromodeoxyuridine (BUdR) and light treatment. This procedure allowed the unique opportunity to use anti-Ia sera directed against the Ia antigens of only the stimulator macrophages or responder T cells to determine against which cell type anti-Ia would block TNP-specific stimulation. It was found that the TNP-specific DNA synthetic response of BUdR and light-treated T cells stimulated with TNP-modified allogeneic macrophages was totally eliminated by anti-Ia sera directed solely against the allogeneic stimulator macrophage. In contrast, anti-Ia sera directed only against the responder T cells had no effect on their response to TNP-modified allogeneic macrophages. These findings indicate that macrophage Ia antigens are required for efficient T cell-macrophage interactions and raise the possibility that T cell Ia antigens may not be required for collaboration with macrophages. This latter possibility was substantiated by experiments in which we show that treating T cells with anti-Ia sera and complement to remove the Ia-positive cells either before or after priming, or both, had no effect on their ability to be primed and restimulated with TNP-modified macrophages.  相似文献   

13.
We have used cells from inbred strain 2 and strain 13 guinea pigs in order to define further the role of Ia antigens in the syngeneic mixed leukocyte reaction (MLR). The guinea pig syngeneic MLR resembled the autologous MLR in man in that it demonstrated both memory and specificity. The Ia antigens appeared to be the proliferative stimuli in that the primary stimulator cell was an Ia-positive adherent peritoneal exudate cell (PEC) and the reaction could be specifically inhibited by anti-Ia sera directed to the stimulator cell. We also demonstrated the existence of two (2 x 13)F1 T cell populations that were capable of reacting to one or the other parental PEC in the absence of any known exogenous antigen. These results suggest that the syngeneic MLR may represent T cell activation mediated through a receptor for self Ia.  相似文献   

14.
Pretreatment of mice genetically susceptible to type II collagen-induced arthritis (CIA) with monoclonal or polyclonal antisera specific for I region gene products (Ia antigens) suppressed or delayed the onset of CIA, whereas pretreatment with anti-Ia to an irrelevant haplotype was without effect. The humoral response to type II collagen was transiently depressed 14 days after immunization but antibody levels did not differ significantly after 28 days. The peak delayed-type hypersensitivity to type II collagen was unaffected by anti-Ia treatment. Monoclonal antibody of one anti-Ia specificity enhanced both the antibody response and the arthritis incidence in one mouse strain.  相似文献   

15.
The present study examined the functional role of Ia antigens on B cells in polyclonal B cell activation induced by a B cell differentiation factor, B151-TRF2. The polyclonal IgM PFC responses by B151-TRF2 were inhibited by monoclonal antibodies specific for class II MHC antigens (Ia antigens) but not class I MHC antigens. Such inhibition by anti-Ia antibodies was haplotype-specific and was observed in the absence of both T cells and accessory cells. Moreover, the anti-Ia antibody-induced inhibition of the B151-TRF2 responses was not due to the blocking of binding of B151-TRF2 to the corresponding B cell receptor. A series of kinetic studies revealed that some Ia-mediated cellular activation process occurs before the resting B cells become responsive to B151-TRF2. Thus, the B151-TRF2-mediated B cell responses consist of at least two distinct phases. The early phase is an Ia-dependent but B151-TRF2-independent process, whereas the late phase is an Ia-independent but B151-TRF2-dependent process. To further characterize the functional role of Ia antigens on B cells, an additional experiment was carried out by using F1 B cells which co-dominantly express both parental Ia antigens on the surface. Interestingly, it was observed that the degree of inhibition of the B151-TRF2-mediated responses of F1 B cells by anti-parental Ia antibody was, at best, one-half that of the parental B cells, suggesting that F1 B cells may be separated into two subpopulations with the restriction specificity for the respective parental Ia antigens. To examine this possibility, (B10 X B10.BR)F1 B cells were separated into adherent and nonadherent cell populations by their ability to bind to either one of the parental B cell monolayers, and the specificity of inhibition of their responses to B151-TRF2 by anti-Ia antibodies was assessed. It was found that the responses of (B10 X B10.BR)F1 B cells adherent to the B10 B cell monolayer or the B10.BR B cell monolayer were almost completely inhibited by anti-I-Ab and anti-I-Ak antibodies, whereas those of nonadherent cells were now selectively inhibited by anti-I-Ak and anti-I-Ab antibodies, respectively. These findings are interpreted as indicating that the B151-TRF2-responsive F1 B cells consist of at least two subpopulations with the restriction specificity for either one of the parental Ia antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease-sensitive fibrils 91 and 72 nm in length, respectively. A third class of only very sparsely distributed short fibrils (63 nm) was observed on mutant HB-V51, which lacks both wall-associated AgB and AgC antigens. The identity of these fibrils and whether they are present on the wild type are not clear. The function of long, protease-resistant fibrils of 178 nm, which are also present on the wild-type strain, remains unknown.  相似文献   

17.
The reactions of Lewis rat lymphocyte membrane antigens with two alloantisera, BN anti-Lewis and BN anti-Fischer have been studied. Three lines of evidence indicated that these antisera reacted with cell surface antigens homologous to Ia antigens of the mouse. 1) After absorption with Lewis platelets, the antisera killed only 40 to 50% of Lewis spleen cells. The majority of such cells were shown to be Ig-positive B cells by the examination of reaction patterns on lymphocytes after separation on nylon wool into T cell- and B cell-enriched subpopulations. 2) SDS-PAGE analysis of solubilized Lewis spleen cell antigens precipitated with these antisera revealed that the platelet-absorbed antisera reacted with molecules comparable in size to mouse Ia antigens (mw approximately equals 35,000 and 28,000). The unabsorbed sera reacted with these molecules and with additional molecules corresponding in size to mouse K and D antigens (m.w. = 45,000). 3) Neither of these antisera killed significant numbers of spleen cells from the partially congenic strain F.BN (seventh backcross homozygotes), a Fischer rat to which the Ag-B.3 allele is being transferred by repetitive backcrossing, indicating that the genes coding for these Ia-like antigens in the rat are linked to the Ag-B locus.  相似文献   

18.
Pretreatment of mouse lymphoid cells with anti-Ia sera and C abrogated the proliferative responses of these cells to Con A. Studies were carried out with several anti-Ia reagents and intra-H-2 recombinant mouse strains to map the I subregion(s) whose products are expressed on Con A-reactive cells. Treatment with a (B10.A X A)F1 anti-B10 reagent and C abrogated the ability of BALB/c cells to respond to Con A. Absorption studies on this reagent demonstrated that Con A-reactive cells express Ia determinants coded by the I-A subregion. The results with two additional reagents, B10.A(4R) anti-B10.A(2R) tested on B10.BR cells and (B10 X D2.GD)F1 anti-B10.D2 absorbed with B10.A cells and tested on BALB/c cells, demonstrated that Con A-reactive cells also express Ia determinants encoded to the right of I-A. Several antisera and strain combinations were evaluated in which the antisera could contain antibodies specific for products of genes encoded by the I-J subregion, but the results were inconclusive. These data demonstrate that there are at least two different I subregions, one in I-A and one to the right of I-A, that code for antigens expressed on Con A-reactive cells.  相似文献   

19.
The cell hybridization technique was used for the production of 12 monoclonal antibodies against H-2Kk, H-2Db, I-Ak and I-Ek antigens. The strain distribution pattern indicated that three antibodies reacted with new H-2 and Ia determinants, respectively, while the majority of determinants defined by the monoclonal antibodies showed good correlation with H-2 and Ia determinants described by conventional alloantisera.Monoclonal Ia antibodies showed strong reactivity with about 90% of surface IgM positive B cells, but not with T cells. In double fluorescence studies, both I-A and I-E determinants were always found to be coexpressed on the same B cells. When the high sensitivity of the fluorescence activated cell sorter was utilized, about 30 to 40% of purified lymph node T cells were found to carry both I-A and I-E antigens, although in a much lower density than B cells. In conclusion, monoclonal Ia antibodies appear to display the same serological and cellular reactivity pattern as do conventional antisera.  相似文献   

20.
To induce Ia molecules on the surface of murine keratinocytes (KC), healthy mice were treated daily with i.p. injections of rIFN-gamma at a dose of 50,000 U/day for 6 days. This resulted in strong Ia expression by KC as determined by immunofluorescence of epidermal sheets or cell suspensions with anti-class II mAb. To obtain a population of Ia-bearing KC devoid of Langerhans cells, a method of depleting Langerhans cells from such suspensions was developed. Although Ia+ KC were unable to stimulate allogeneic T cells in a primary epidermal cell-lymphocyte reaction (less than 5% control), they did induce a proliferative response in an allospecific T cell line. Ia+ KC were unable to present native peptide molecules to class II restricted, Ag-specific T cell hybridomas. However, Ia+ KC were able to present a peptide fragment of pigeon cytochrome c to a hybridoma, suggesting that although these cells cannot process native protein Ag, they can present antigenic peptides. Ia+ (but not Ia-) KC also served as targets for class II restricted cytolytic T cell clones. These data indicate that the Ia expressed by KC is a functional molecule, and that Ia+ KC can participate in some immunologic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号