首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seiler N 《Amino acids》2004,26(4):317-319
Summary. Spermine is a constituent of most eucaryotic cells, however, it is not of vital importance for the vertebrate organism, as is demonstrated by the existence of transgenic (Gy) mice that lack spermine and spermine synthase. In contrast its degradation appears to be of vital importance, since mice die after chronic administration of N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72517). Under this condition spermine accumulates in red blood cells and blood plasma. Lethal toxicity can be avoided by intervals of MDL 72527-free periods. During these periods spermine appears to be directly degraded to spermidine without an intermediary acetylation step within the red blood cells. Since this reaction is of enormous physiological significance, it will be important to characterise the red blood cell spermine oxidase, and it will be particularly important to determine whether this oxidase is identical with the FAD-dependent polyamine oxidase that is considered to be involved in the polyamine interconversion sequence, or whether it is one of the recently characterised spermine oxidase isoenzymes.  相似文献   

2.
Summary. The polyamines spermine, spermidine and putrescine are ubiquitous cell components. If they accumulate excessively within the cells, due either to very high extracellular concentrations or to deregulation of the systems which control polyamine homeostasis, they can induce toxic effects. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper containing amine oxidases. Polyamine concentrations are high in growing tissues such as tumors. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. These enzymes catalyze the oxidative deamination of biogenic amines and polyamines to generate the reaction products H2O2 and aldehyde(s) that are able to induce cell death in several cultured human tumor cell lines. H2O2 generated by the oxidation reaction is able to cross the inner membrane of mitochondria and directly interact with endogenous molecules and structures, inducing an intense oxidative stress. Since amine oxidases are involved in many crucial physiopathological processes, investigations on their involvement in human diseases offer great opportunities to enter novel classes of therapeutic agents.  相似文献   

3.
It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N 1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N 1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3–20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid ( 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity ( 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.Abbreviations DAO diamine oxidase - DFMO DL--difluoromethylornithine - DP 1-3-diaminopropane - IC50 50% inhibition concentration - MAO monoamine oxidase - N 1-ACSP; N 1-acetylspermine - N1-ACSPD N 1-acetylspermidine - N 8-ACSPD N 8-acetylspermidine - ODC ornithine decarboxylase - PAO(s) polyamine oxidase(s) - PUT putrescine - SP spermine - SPD spermidine  相似文献   

4.
R. Federico  R. Angelini 《Planta》1988,173(3):317-321
Diamine-oxidase (DAO; EC 1.4.3.6) activity and di-and polyamine levels were estimated along the epicotyl and root of light-grown and etiolated lentil (Lens culinaris Medicus) and pea (Pisum sativum L.) seedlings. The activity of DAO was higher in etiolated epicotyls than in lightgrown ones. In both species there was a positive correlation between DAO activity and the diamine (putrescine and cadaverine) levels along the whole epicotyl and root. Polyamine (spermine and spermidine) distribution seemed to be associated with the meristematic and elongating zone of the epicotyl and root. The physiological function of DAO is discussed in relation to its possible role in providing hydrogen peroxide to peroxidase-dependent reactions occurring in the cell wall.Abbreviations CAD cadaverine - DA diamine - DAO diamine oxidase - PA polyamine - PUT putrescine - SPD spermidine - SPM spermine  相似文献   

5.
Summary. In this paper we describe the polyamine biosynthesis and oxidation processes, giving an overview about recent results in free-living Amoebae.The protozoa polyamine levels are different in comparison with mammalian cells. Also, the polyamine levels in protozoa cells change if these species are pathological or not for the human beings. All the amoeba strains show high concentrations of 1,3-diaminopropane (DAP), spermidine and acetylspermidine while spermine is absent. In these amoeba a considerable polyamine oxidase activity has been found, which acts on N8-acetylspermidine, but not on free polyamines. This enzyme is responsible, together with polyamine acetylase, of DAP synthesis whose function is not well known.  相似文献   

6.
New procedures for determining putrescine, spermidine and spermine were first established here by the end point assay method using polyamine oxidase from Penicillium chrysogenum or Aspergillus terreus and putrescine oxidase from Micrococcus rubens. Method 1: Spermidine and spermine were first oxidized with polyamine oxidase (step A). To the reaction mixture, putrescine oxidase was added to oxidize putrescine (step B). Putrescine and spermidine in another reaction mixture were oxidized with putrescine oxidase (step C). Method 2 : Putrescine and spermidine were first oxidized with putrescine oxidase (step A). To the reaction mixture, polyamine oxidase was added to oxidize spermine (step B). Spermidine and spermine in another reaction mixture were oxidized with polyamine oxidase (step C). The amounts of putrescine, spermidine and spermine were determined from the absorbance values at each steps A, B and C.  相似文献   

7.
Spermine is a constituent of all vertebrate cells. Nevertheless, it exerts toxic effects if it accumulates in cells. Spermine is a natural substrate of the FAD-dependent polyamine oxidase, a constitutive enzyme of many cell types. It has been reported that the toxicity of spermine was enhanced if polyamine oxidase was inhibited. We were interested to examine spermine toxicity to human colon carcinoma-derived CaCo-2 cells because, in contrast to most tumor cell lines, CaCo-2 cells undergo differentiation, which is paralleled by changes in polyamine metabolism. CaCo-2 cells were remarkably resistant to spermine accumulation, presumably because spermine is degraded by polyamine oxidase at a rate sufficient to provide spermidine for the maintenance of growth. Inactivation of polyamine oxidase increased the sensitivity to spermine. A major reason for the enhanced spermine cytotoxicity at low polyamine oxidase activity is presumably the profound depletion of spermidine, and the consequent occupation of spermidine binding sites by spermine. Hydrogen peroxide and the aldehydes 3-aminopropanal and 3-acetamidopropanal, the products of polyamine oxidase-catalyzed splitting of spermine and N 1-acetylspermine, contribute little to spermine cytotoxicity. Activation of caspase by spermine was insignificant, and the formation of DNA ladders, another indicator of apoptotic cell death, could not be observed. Thus it appears that cell death due to excessive accumulation of spermine in CaCo-2 cells was mainly nonapoptotic. The content of brush border membranes did not change between days 6 and 8 after seeding, and it was not affected by exposure of the cells to spermine. However, the activities of alkaline phosphatase, sucrase, and aminopeptidase in nontreated cells were considerably enhanced during this period, but remained low if cells were exposed to spermine. These changes appear to indicate that differentiation is prevented by intoxication with spermine, although other explanations cannot be excluded. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m?1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization, plant productivity and N, P, K+, Fe, Zn and Cu concentrations, while it increased Na+ level, particularly in Giza 168. Mycorrhizal colonization significantly enhanced plant productivity and N, P, K+, Fe, Zn and Cu acquisition, while it diminished Na+ uptake, especially in Sids 1. Salinity increased putrescine level in Giza 168, however, values of spermidine and spermine increased in Sids 1 and decreased in Giza 168. Mycorrhization changed the polyamine balance under saline conditions, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. Moreover, mycorrhizal inoculation significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed wheat plants. Modulation of nutrient acquisition and polyamine pool can be one of the mechanisms used by AMF to improve wheat adaptation to saline soils. This is the first report dealing with mycorrhization effect on diamine oxidase and polyamine oxidase activities under salt stress.  相似文献   

9.
Polyamines and cancer: Minireview article   总被引:4,自引:0,他引:4  
Bachrach U 《Amino acids》2004,26(4):307-309
Summary. The naturally occurring polyamines, spermine, spermidine and the diamine putrescine are widespread in nature. They have been implicated in growth and differentiation processes. Polyamines accumulate in cancerous tissues and their concentration is elevated in body fluids of cancer patients. Assays of urinary and blood polyamines have been used to detect cancer and to determine the success of therapy. Drugs which inhibit the synthesis of polyamines can prevent cancer and may also be used for therapeutic purposes. Ornithine decarboxylase, which catalyzes the rate limiting step in polyamine synthesis, can serve as a marker of proliferation. Recently, a new in vitro chemosensitivity test, based on the disappearance of ornithine decarboxylase in drug-treated cancer cells has been developed. The increasing interest in polyamines and their physiological functions may lead to a more extensive application of these compounds or their derivatives in cancer diagnosis and treatment.  相似文献   

10.
Summary. In this study, polyamine oxidase from maize (MPAO), which is involved in the terminal catabolism of spermidine and spermine to produce an aminoaldehyde, 1,3-diaminopropane and H2O2, has been conditionally expressed at high levels in the nucleus of MCF-7 human breast cancer cells, with the aim to interfere with polyamine homeostasis and cell proliferation. Recombinant MPAO expression induced accumulation of a high amount of 1,3-diaminopropane, an increase of putrescine levels and no alteration in the cellular content of spermine and spermidine. Furthermore, recombinant MPAO expression did not interfere with cell growth of MCF-7 cells under normal conditions but it did confer higher growth sensitivity to etoposide, a DNA topoisomerase II inhibitor widely used as antineoplastic drug. These data suggest polyamine oxidases as a potential tool to improve the efficiency of antiproliferative agents despite the difficulty to interfere with cellular homeostasis of spermine and spermidine. Authors’ address: Dr. Paraskevi Tavladoraki, Department of Biology, University ‘Roma Tre’, Viale G. Marconi 446, 00146 Rome, Italy  相似文献   

11.
Summary. Our study was undertaken to elucidate the effects of selenomethionine (SeMet) on polyamine metabolism in regenerating rat liver tissue, as useful model of rapidly growing normal tissue. We have examined the levels of spermine, spermidine and putrescine in liver tissue. At the same time we have evaluated the activities of polyamine oxidase (PAO) and diamine oxidase (DAO), the catabolic enzymes of polyamine metabolism. The obtained results suggest that polyamine levels in regenerating liver tissue, at 7th day after two-thirds partial hepatectomy, were higher in comparison with control group. The administration of selenomethionine to hepatectomized animals during seven days, in a single daily dose of 2.5 μg/100 g body weight, increases the amount of spermine and spermidine; the level of putrescine does not change under the influence of SeMet in regenerating rat liver tissue. PAO activity is lower in regenerating hepatic tissue than in control group. Supplementation of hepatectomized animals with SeMet significantly decreases the activity of this enzyme. DAO activity was significantly higher in hepatectomized and in operated animals treated with SeMet compared to the sham-operated and control ones. The differential sensitivity observed in our model of highly proliferating normal tissue to SeMet, compared with the reported anticancer activity of this molecule is discussed.  相似文献   

12.
Polyamines such as putrescine, spermidine and spermine are ubiquitous aliphatic amines involved in reproductive events in plants and algae, and first become evident through changes in endogenous levels during reproductive development. To examine whether the differences observed in polyamines, during carposporogenesis, in the red alga Grateloupia, followed a specific pattern as is seen in other organisms, infertile axes (i.e. not showing cystocarps) were excised from the same holdfast of female fertilized individuals (i.e. showing cystocarps in other axes), and cultivated until the cystocarps became visible. Changes in the endogenous levels of free putrescine, spermidine and spermine were monitored over the 8 days of culture. The activity of enzymes related to polyamine metabolism, such as l-ornithine decarboxylase (ODC), diamine oxidase and polyamine oxidase, was measured at the beginning and end of the experimental period. Up to 50% of the infertile axes became fertile and produced cystocarps at a density of 1.91 ± 0.1 cystocarps mm−2 after 8 days. The endogenous content of spermine increased markedly over the first 5 days of culture, then decreased to the initial level by day 8. Spermidine followed a similar pattern to spermine, whereas putrescine remained at high levels, until day 5 when it decreased abruptly. The activity of ODC was less on day 8 than on day 0, whereas the activities of diamine oxidase and polyamine oxidase increased. In parallel experiments with explants from infertile axes, exogenously added spermine (10−6 M) increased the number of cystocarps, and reversed the effect of cyclohexylamine (CHA), which is known to inhibit polyamine synthesis in Grateloupia. Serial sectioning and microscopic observation of specimens from explants cultivated in 10−6 M spermine indicated that cystocarp development was induced. The results suggest that, during transition from infertile to fertile spermine is accumulated, thus favouring the development of cystocarps, given the presumed role of spermine as an inducing agent.  相似文献   

13.
Putrescine, spermidine and spermine of high vigour, low vigour and non-viable (classes 1, 2 and 3 respectively) seeds of Oryza sativa increased with loss of viability. The largest concentration of spermine was found in non-viable embryos. Spermine was absent in the husks of all the three categories of seeds. Arginine decarboxylase was greatest in high vigoured seeds and its activity gradually declined with loss of viability. However, diamine oxidase and polyamine oxidase activities gradually increased with the loss of viability of the seeds while DNA, RNA and protein contents decreased. The total content of polyamines increased on kinetin treatment but declined on ABA treatment. DNA, RNA and protein followed the same trend as polyamines. The polyamine contents increased by ca 3- and 4-fold, respectively, in high vigoured and low vigoured seeds on 10?4 M kinetin treatment. The activity of ADC followed the same change as that of the polyamines in both cases, but the reverse was observed for the activities of diamine and polyamine oxidases.  相似文献   

14.
Wallace HM  Fraser AV 《Amino acids》2004,26(4):353-365
Summary. The identification of increased polyamine concentrations in a variety of diseases from cancer and psoriasis to parasitic infections has led to the hypothesis that manipulation of polyamine metabolism is a realistic target for therapeutic or preventative intervention in the treatment of certain diseases.The early development of polyamine biosynthetic single enzyme inhibitors such as -difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) showed some interesting early promise as anticancer drugs, but ultimately failed in vivo. Despite this, DFMO is currently in use as an effective anti-parasitic agent and has recently also been shown to have further potential as a chemopreventative agent in colorectal cancer.The initial promise in vitro led to the development and testing of other potential inhibitors of the pathway namely the polyamine analogues. The analogues have met with greater success than the single enzyme inhibitors possibly due to their multiple targets. These include down regulation of polyamine biosynthesis through inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase and decreased polyamine uptake. This coupled with increased activity of the catabolic enzymes, polyamine oxidase and spermidine/spermine N1-acetyltransferase, and increased polyamine export has made the analogues more effective in depleting polyamine pools. Recently, the identification of a new oxidase (PAO-h1/SMO) in polyamine catabolism and evidence of induction of both PAO and PAO-h1/SMO in response to polyamine analogue treatment, suggests the analogues may become an important part of future chemotherapeutic and/or chemopreventative regimens.  相似文献   

15.
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.  相似文献   

16.
Slocum RD  Furey MJ 《Planta》1991,183(3):443-450
An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.Abbreviations AG 1-aminoguanidine - AT 3-amino-1,2,4-triazole - -HEH -hydroxyethylhydrazine - DAO(s) diamine oxidase(s) - PAO(s) polyamine oxidase(s) - Put putrescine - Spd spermidine - Spm spermine The authors wish to thank Nancy Piatczyc for the technical assistance with electron-microscopy studies. We are grateful to Dr. Stanley J. Roux, University of Texas at Austin, for providing us with samples of maize cell-wall exudates. This work was supported by grants to R.D.S from the National Aeronautics and Space Administration (NAGW-1049 and NAGW-1382).  相似文献   

17.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed.  相似文献   

18.
Summary The uncommon polyamines, norspermidine and norspermine, were detected in maizein vitro cultures of three different genotypes. The common polyamines, spermidine and spermine, along with the diamine, putrescine, were also observed. The total amounts of the uncommon polyamines, norspermidine and norspermine, were comparable to the total amounts of the common polyamines, spermidine and spermine, in the maize tissues. The titer for norspermidine was 6- to 15-fold greater than that of its common counterpart (spermidine) in the three genotypes. Norspermidine was the predominant polyamine among all triamines and tetramines detected in cell cultures of two of the three genotypes of maize examined and was predominant along with spermine in the third genotype. Enzyme assays performed with extracts from callus of one of the genotypes suggested a likely mechanism to account for the biosynthesis of the uncommon polyamines in cultured maize cells, through the actions of putrescine aminopropyltransferase, polyamine oxidase, and Schiff-base reductase/decarboxylase enzyme activities. This is the first report of the detection of uncommon polyamines in maize tissues, as well as the first report of these uncommon polyamines in a monocotyledonous plant.  相似文献   

19.
The apparent biological half-lives of spermidine and spermine in mouse brain and other organs were determined by measurement of the specific radioactivities of these compounds over long periods of time. The endogenous polyamine pools were labeled by repeated intraperitoneal injections of [1,4-14C]putrescine·2HCl, [2-14C]d,l-methionine, [2-3H]l-methionine, andS-adenosyl-[2-3H]l-methionine. Repeated injections were given to ensure labeling of both fast and slow polyamine pools. It was shown that the two parts of the polyamine molecules which derive from ornithine and methionine have significantly different life spans, especially in the brain. Actual turnover rates of polyamines could not be determined because of the active interconversion between spermine and spermidine, and between spermidine and putrescine. The observed reutilization of putrescine originating from spermidine degradation for spermidine biosynthesis, and the analogous reutilization of spermidine in spermine biosynthesis is discussed with respect to its physiological significance and its relationship to cellular organization.  相似文献   

20.
Summary. The levels of polyamines (putrescine, spermidine and spermine) and polyamine oxidase in plasma of patients with chronic renal failure were determined. The level of putrescine was increased but the level of spermine was decreased in the plasma of these patients. The patients also had increased plasma polyamine oxidase activity leading to increased degradation of spermine. As acrolein was a major toxic compound produced from spermine by polyamine oxidase, the levels of free and protein-conjugated acrolein in plasma were also measured. Acrolein levels were enhanced in plasma of patients with chronic renal failure. The accumulated acrolein found as protein conjugates was equivalent to 170 μM, which was about 5-fold higher than in plasma of normal subjects. It was found that acrolein is mainly produced by spermine oxidase in plasma. An increase in putrescine, spermine oxidase and acrolein in plasma was observed in all cases such as diabetic nephropathy, chronic glomerulonephritis and nephrosclerosis. After patients with chronic renal failure had undergone hemodialysis, their levels of plasma polyamines, spermine oxidase and acrolein returned towards normal. It is likely that acrolein produced from spermine accumulates in the blood due to decreased excretion into urine and may function as a uremic “toxin”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号