共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Predicting Protein Function and Binding Profile via Matching of Local Evolutionary and Geometric Surface Patterns 总被引:1,自引:0,他引:1
Yan Yuan Tseng 《Journal of molecular biology》2009,387(2):451-1175
Inferring protein functions from structures is a challenging task, as a large number of orphan protein structures from structural genomics project are now solved without their biochemical functions characterized. For proteins binding to similar substrates or ligands and carrying out similar functions, their binding surfaces are under similar physicochemical constraints, and hence the sets of allowed and forbidden residue substitutions are similar. However, it is difficult to isolate such selection pressure due to protein function from selection pressure due to protein folding, and evolutionary relationship reflected by global sequence and structure similarities between proteins is often unreliable for inferring protein function. We have developed a method, called pevoSOAR (pocket-based evolutionary search of amino acid residues), for predicting protein functions by solving the problem of uncovering amino acids residue substitution pattern due to protein function and separating it from amino acids substitution pattern due to protein folding. We incorporate evolutionary information specific to an individual binding region and match local surfaces on a large scale with millions of precomputed protein surfaces to identify those with similar functions. Our pevoSOAR method also generates a probablistic model called the computed binding a profile that characterizes protein-binding activities that may involve multiple substrates or ligands. We show that our method can be used to predict enzyme functions with accuracy. Our method can also assess enzyme binding specificity and promiscuity. In an objective large-scale test of 100 enzyme families with thousands of structures, our predictions are found to be sensitive and specific: At the stringent specificity level of 99.98%, we can correctly predict enzyme functions for 80.55% of the proteins. The overall area under the receiver operating characteristic curve measuring the performance of our prediction is 0.955, close to the perfect value of 1.00. The best Matthews coefficient is 86.6%. Our method also works well in predicting the biochemical functions of orphan proteins from structural genomics projects. 相似文献
3.
4.
By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high-specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1-3 (depth 3 PPV). In a high-sensitivity mode, coverage rose significantly (84%), while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 unannotated SG proteins. In 529 cases—including 280 non-enzymes and 21 for metal ion ligands—the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus, local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta. 相似文献
5.
Elementary modes analysis allows one to reveal whether a set of known enzymes is sufficient to sustain functionality of the cell. Moreover, it is helpful in detecting missing reactions and predicting which enzymes could fill these gaps. Here, we perform a comprehensive elementary modes analysis and a genomic context analysis of Mycoplasma pneumoniae nucleotide metabolism, and search for new enzyme activities. The purine and pyrimidine networks are reconstructed by assembling enzymes annotated in the genome or found experimentally. We show that these reaction sets are sufficient for enabling synthesis of DNA and RNA in M. pneumoniae. Special focus is on the key modes for growth. Moreover, we make an educated guess on the nutritional requirements of this micro-organism. For the case that M. pneumoniae does not require adenine as a substrate, we suggest adenylosuccinate synthetase (EC 6.3.4.4), adenylosuccinate lyase (EC 4.3.2.2) and GMP reductase (EC 1.7.1.7) to be operative. GMP reductase activity is putatively assigned to the NRDI_MYCPN gene on the basis of the genomic context analysis. For the pyrimidine network, we suggest CTP synthase (EC 6.3.4.2) to be active. Further experiments on the nutritional requirements are needed to make a decision. Pyrimidine metabolism appears to be more appropriate as a drug target than purine metabolism since it shows lower plasticity. 相似文献
6.
Lipid rafts are specialized cholesterol-enriched microdomains in the cell membrane. They have been known as a platform for protein-protein interactions and to take part in multiple biological processes. Nevertheless, how lipid rafts influence protein properties at the proteomic level is still an open question for researchers using traditional biochemical approaches. Here, by annotating the lipid raft localization of proteins in human protein-protein interaction networks, we performed a systematic analysis of the function of proteins related to lipid rafts. Our results demonstrated that lipid raft proteins and their interactions were critical for the structure and stability of the whole network, and that the interactions between them were significantly enriched. Furthermore, for each protein in the network, we calculated its “lipid raft dependency (LRD),” which indicates how close it is topologically associated with lipid rafts, and we then uncovered the connection between LRD and protein functions. Proteins with high LRD tended to be essential for mammalian development, and malfunction of these proteins was inclined to cause human diseases. Coordinated with their neighbors, high-LRD proteins participated in multiple biological processes and targeted many pathways in diseases pathogenesis. High-LRD proteins were also found to have tissue specificity of expression. In summary, our network-based analysis denotes that lipid raft proteins have higher centrality in the network, and that lipid-raft-related proteins have multiple functions and are probably concerned with many biological processes in disease development. 相似文献
7.
8.
9.
Metabolic engineering has been playing important roles in developing high performance microorganisms capable of producing various chemicals and materials from renewable biomass in a sustainable manner. Synthetic and systems biology are also contributing significantly to the creation of novel pathways and the whole cell-wide optimization of metabolic performance, respectively. In order to expand the spectrum of chemicals that can be produced biotechnologically, it is necessary to broaden the metabolic capacities of microorganisms. Expanding the metabolic pathways for biosynthesizing the target chemicals requires not only the enumeration of a series of known enzymes, but also the identification of biochemical gaps whose corresponding enzymes might not actually exist in nature; this issue is the focus of this paper. First, pathway prediction tools, effectively combining reactions that lead to the production of a target chemical, are analyzed in terms of logics representing chemical information, and designing and ranking the proposed metabolic pathways. Then, several approaches for potentially filling in the gaps of the novel metabolic pathway are suggested along with relevant examples, including the use of promiscuous enzymes that flexibly utilize different substrates, design of novel enzymes for non-natural reactions, and exploration of hypothetical proteins. Finally, strain optimization by systems metabolic engineering in the context of novel metabolic pathways constructed is briefly described. It is hoped that this review paper will provide logical ways of efficiently utilizing ‘big’ biological data to design and develop novel metabolic pathways for the production of various bulk chemicals that are currently produced from fossil resources. 相似文献
10.
11.
12.
Ramie fiber extracted from stem bark is one of the most important natural fibers. The root-lesion nematode (RLN) Pratylenchus coffeae is a major ramie pest and causes large fiber yield losses in China annually. The response mechanism of ramie to RLN infection is poorly understood. In this study, we identified genes that are potentially involved in the RLN-resistance in ramie using Illumina pair-end sequencing in two RLN-infected plants (Inf1 and Inf2) and two control plants (CO1 and CO2). Approximately 56.3, 51.7, 43.4, and 45.0 million sequencing reads were generated from the libraries of CO1, CO2, Inf1, and Inf2, respectively. De novo assembly for these 196 million reads yielded 50,486 unigenes with an average length of 853.3 bp. A total of 24,820 (49.2%) genes were annotated for their function. Comparison of gene expression levels between CO and Inf ramie revealed 777 differentially expressed genes (DEGs). The expression levels of 12 DEGs were further confirmed by real-time quantitative PCR (qRT-PCR). Pathway enrichment analysis showed that three pathways (phenylalanine metabolism, carotenoid biosynthesis, and phenylpropanoid biosynthesis) were strongly influenced by RLN infection. A series of candidate genes and pathways that may contribute to the defense response against RLN in ramie will be helpful for further improving resistance to RLN infection. 相似文献
13.
14.
Recent research has highlighted roles for non-coding RNA i7n the regulation of stress tolerance in bats. In this study, we propose that microRNA could also play an important role in neuronal maintenance during hibernation. To explore this possibility, RT-PCR was employed to investigate the expression of eleven microRNAs from the brain tissue of euthermic control and torpid bats. Results show that eight microRNAs (miR-21, -29b, -103, -107, -124a, -132, -183 and -501) increased (1.2–1.9 fold) in torpid bats, while the protein expression of Dicer, a microRNA processing enzyme, did not significantly change during torpor. Bioinformatic analysis of the differentially expressed microRNA suggests that these microRNAs are mainly involved in two processes: (1) focal adhesion and (2) axon guidance. To determine the extent of microRNA sequence conservation in the bat, we successfully identified bat microRNA from sequence alignments against known mouse (Mus musculus) microRNA. We successfully identified 206 conserved pre-microRNA sequences, leading to the identification of 344 conserved mature microRNA sequences. Sequence homology of the identified sequences was found to be 94.76 ± 3.95% and 98.87 ± 2.24% for both pre- and mature microRNAs, respectively. Results suggest that brain function related to the differentiation of neurons and adaptive neuroprotection may be under microRNA control during bat hibernation. 相似文献
15.
16.
17.
18.
19.