首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.  相似文献   

2.
Icosahedral double-stranded DNA (dsDNA) bacterial viruses are known to package their genomes into preformed procapsids via a unique portal vertex. Bacteriophage PRD1 differs from the more commonly known icosahedral dsDNA phages in that it contains an internal lipid membrane. The packaging of PRD1 is known to proceed via preformed empty capsids. Now, a unique vertex has been shown to exist in PRD1. We show in this study that this unique vertex extends to the virus internal membrane via two integral membrane proteins, P20 and P22. These small membrane proteins are necessary for the binding of the putative packaging ATPase P9, via another capsid protein, P6, to the virus particle.  相似文献   

3.
PRD1 is the type virus of the Tectiviridae family. Its linear double-stranded DNA genome has covalently attached terminal proteins and is surrounded by a membrane, which is further enclosed within an icosahedral protein capsid. Similar to tailed bacteriophages, PRD1 packages its DNA into a preformed procapsid. The PRD1 putative packaging ATPase P9 is a structural protein located at a unique vertex of the capsid. An in vitro system for packaging DNA into preformed empty procapsids was developed. The system uses cell extracts of overexpressed P9 protein and empty procapsids from a P9-deficient mutant virus infection and PRD1 DNA containing a LacZalpha-insert. The in vitro packaged virions produce distinctly blue plaques when plated on a suitable host. This is the first time that a viral genome is packaged in vitro into a membrane vesicle. Comparison of PRD1 P9 with putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses revealed a new packaging ATPase-specific motif. Surprisingly the viruses having this packaging ATPase motif, and thus considered to be related, were the same as those recently grouped together using the coat protein fold and virion architecture. Our finding here strongly supports the idea that all these viruses infecting hosts in all domains of life had a common ancestor.  相似文献   

4.
Genome packaging and delivery are fundamental steps in the replication cycle of all viruses. Icosahedral viruses with linear double-stranded DNA (dsDNA) usually package their genome into a preformed, rigid procapsid using the power generated by a virus-encoded packaging ATPase. The pressure and stored energy due to this confinement of DNA at a high density is assumed to drive the initial stages of genome ejection. Membrane-containing icosahedral viruses, such as bacteriophage PRD1, present an additional architectural complexity by enclosing their genome within an internal membrane vesicle. Upon adsorption to a host cell, the PRD1 membrane remodels into a proteo-lipidic tube that provides a conduit for passage of the ejected linear dsDNA through the cell envelope. Based on volume analyses of PRD1 membrane vesicles captured by cryo-electron tomography and modeling of the elastic properties of the vesicle, we propose that the internal membrane makes a crucial and active contribution during infection by maintaining the driving force for DNA ejection and countering the internal turgor pressure of the host. These novel functions extend the role of the PRD1 viral membrane beyond tube formation or the mere physical confinement of the genome. The presence and assistance of an internal membrane might constitute a biological advantage that extends also to other viruses that package their linear dsDNA to high density within an internal vesicle.  相似文献   

5.
The double-stranded DNA (dsDNA) virus PRD1 carries its genome in a membrane surrounded by an icosahedral protein shell. The shell contains 240 copies of the trimeric P3 protein arranged with a pseudo T = 25 triangulation that is reminiscent of the mammalian adenovirus. DNA packaging and infection are believed to occur through the vertices of the particle. We have used immunolabeling to define the distribution of proteins on the virion surface. Antibodies to protein P3 labeled the entire surface of the virus. Most of the 12 vertices labeled with antibodies directed against proteins P5, P2, and P31. These proteins are known to function in virus binding to the cell surface. Proteins P6, P11, and P20 were found on a single vertex per virion. The P6 and P20 proteins are believed to function in DNA packaging. Protein P11 is a pilot protein that is involved in a complex that mediates the early stages of DNA entry to the host cell. Labeling with antibodies to P5 or P2 did not affect the labeling of P6, the unique vertex protein. Labeling with antibodies to the unique vertex protein P6 interfered with the labeling by antibodies to the unique vertex protein P20. We conclude that PRD1 utilizes 11 of its vertices for initial receptor binding. It utilizes a single, unique vertex for both DNA packing during assembly and DNA delivery during infection.  相似文献   

6.
DNA translocation across the barriers of recipient cells is not well understood. Viral DNA delivery mechanisms offer an opportunity to obtain useful information in systems in which the process can be arrested to a number of stages. PRD1 is an icosahedral double-stranded (ds)DNA bacterial virus with an internal membrane. It is an atypical dsDNA phage, as any of the vertex spikes can be used for receptor recognition. In this report, we dissect the PRD1 DNA entry into a number of steps: (i) outer membrane (OM) penetration; (ii) peptidoglycan digestion; (iii) cytoplasmic membrane (CM) penetration; and (iv) DNA translocation. We present a model for PRD1 DNA entry proposing that the initial stage of entry is powered by the pressure build-up during DNA packaging. The viral protein P11 is shown to function as the first DNA delivery protein needed to penetrate the OM. We also report a DNA translocation machinery composed of at least three viral integral membrane proteins, P14, P18 and P32.  相似文献   

7.
The assembly of bacteriophage PRD1 proceeds via formation of empty procapsids containing an internal lipid membrane, into which the linear double-stranded DNA genome is subsequently packaged. The packaging ATPase P9 and other putative packaging proteins have been shown to be located at a unique vertex of the PRD1 capsid. Here, we describe the isolation and characterization of a suppressor-sensitive PRD1 mutant deficient in the unique vertex protein P6. Protein P6 was found to be an essential part of the PRD1 packaging machinery; its absence leads to greatly reduced packaging efficiency. Lack of P6 was not found to affect particle assembly, because in the P6-deficient mutant infection, wild-type (wt) amounts of particles were produced, although most were empty. P6 was determined not to be a specificity factor, as the few filled particles seen in the P6-deficient infection contained only PRD1-specific DNA. The presence of P6 was not necessary for retention of DNA in the capsid once packaging had occurred, and P6-deficient DNA-containing particles were found to be stable and infectious, albeit not as infectious as wt PRD1 virions. A packaging model for bacteriophage PRD1, based on previous results and those obtained in this study, is presented.  相似文献   

8.
Bacteriophage PRD1 shares many structural and functional similarities with adenovirus. A major difference is the PRD1 internal membrane, which acts in concert with vertex proteins to translocate the phage genome into the host. Multiresolution models of the PRD1 capsid, together with genetic analyses, provide fine details of the molecular interactions associated with particle stability and membrane dynamics. The N- and C-termini of the major coat protein (P3), which are required for capsid assembly, act as conformational switches bridging capsid to membrane and linking P3 trimers. Electrostatic P3-membrane interactions increase virion stability upon DNA packaging. Newly revealed proteins suggest how the metastable vertex works and how the capsid edges are stabilized.  相似文献   

9.
BACKGROUND: The dsDNA bacteriophage PRD1 has a membrane inside its icosahedral capsid. While its large size (66 MDa) hinders the study of the complete virion at atomic resolution, a 1.65-A crystallographic structure of its major coat protein, P3, is available. Cryo-electron microscopy (cryo-EM) and three-dimensional reconstruction have shown the capsid at 20-28 A resolution. Striking architectural similarities between PRD1 and the mammalian adenovirus indicate a common ancestor. RESULTS: The P3 atomic structure has been fitted into improved cryo-EM reconstructions for three types of PRD1 particles: the wild-type virion, a packaging mutant without DNA, and a P3-shell lacking the membrane and the vertices. Establishing the absolute EM scale was crucial for an accurate match. The resulting "quasi-atomic" models of the capsid define the residues involved in the major P3 interactions, within the quasi-equivalent interfaces and with the membrane, and show how these are altered upon DNA packaging. CONCLUSIONS: The new cryo-EM reconstructions reveal the structure of the PRD1 vertex and the concentric packing of DNA. The capsid is essentially unchanged upon DNA packaging, with alterations limited to those P3 residues involved in membrane contacts. These are restricted to a few of the N termini along the icosahedral edges in the empty particle; DNA packaging leads to a 4-fold increase in the number of contacts, including almost all copies of the N terminus and the loop between the two beta barrels. Analysis of the P3 residues in each quasi-equivalent interface suggests two sites for minor proteins in the capsid edges, analogous to those in adenovirus.  相似文献   

10.
Viral capsids are robust structures designed to protect the genome from environmental insults and deliver it to the host cell. The developmental pathway for complex double-stranded DNA viruses is generally conserved in the prokaryotic and eukaryotic groups and includes a genome packaging step where viral DNA is inserted into a pre-formed procapsid shell. The procapsids self-assemble from monomeric precursors to afford a mature icosahedron that contains a single “portal” structure at a unique vertex; the portal serves as the hole through which DNA enters the procapsid during particle assembly and exits during infection. Bacteriophage λ has served as an ideal model system to study the development of the large double-stranded DNA viruses. Within this context, the λ procapsid assembly pathway has been reported to be uniquely complex involving protein cross-linking and proteolytic maturation events. In this work, we identify and characterize the protease responsible for λ procapsid maturation and present a structural model for a procapsid-bound protease dimer. The procapsid protease possesses autoproteolytic activity, it is required for degradation of the internal “scaffold” protein required for procapsid self-assembly, and it is responsible for proteolysis of the portal complex. Our data demonstrate that these proteolytic maturation events are not required for procapsid assembly or for DNA packaging into the structure, but that proteolysis is essential to late steps in particle assembly and/or in subsequent infection of a host cell. The data suggest that the λ-like proteases and the herpesvirus-like proteases define two distinct viral protease folds that exhibit little sequence or structural homology but that provide identical functions in virus development. The data further indicate that procapsid assembly and maturation are strongly conserved in the prokaryotic and eukaryotic virus groups.  相似文献   

11.
Bacteriophage PRD1 is a membrane-containing virus with an unexpected similarity to adenovirus. We mutagenized unassigned PRD1 genes to identify minor capsid proteins that could be structural or functional analogs to adenovirus proteins.We report here the identification of an amber mutant, sus525, in an essential PRD1 gene XXXI. The gene was cloned and the gene product was overexpressed and purified to near homogeneity. Analytical ultracentrifugation and gel filtration showed that P31 is a homopentamer of about 70 kDa. The protein was shown to be accessible on the virion surface and its absence in the sus525 particles led to the deficiency of two other viral coat proteins, protein P5 and the adsorption protein P2. Cryo-electron microscopy and image reconstruction of the sus525 particles indicate that these proteins are located on the capsid vertices, because in these particles the entire vertex structure was missing along with the peripentonal major capsid protein P3 trimers. Sus525 particles package DNA effectively but loose it upon purification.All of the PRD1 vertex structures are labile and potentially capable of mediating DNA delivery; this is in contrast to other dsDNA phages which employ a single vertex for packaging and delivery. We propose that this arises from a symmetry mismatch between protein P2 and the pentameric P31 in analogy to that between the adenovirus penton base and the receptor-binding spike.  相似文献   

12.
DNA packaging orders the membrane of bacteriophage PRD1.   总被引:11,自引:0,他引:11       下载免费PDF全文
S J Butcher  D H Bamford    S D Fuller 《The EMBO journal》1995,14(24):6078-6086
Bacteriophage PRD1 contains a linear dsDNA genome enclosed by a lipid membrane lying within a protein coat. Determination of the structure of the detergent-treated particle to 2 nm by cryo-electron microscopy and three-dimensional reconstruction has defined the position of the major coat protein P3. The coat contains 240 copies of trimeric P3 packed into positions of local 6-fold symmetry on a T = 25 lattice. The three-dimensional structures of the PRD1 virion and a DNA packaging mutant to a resolution of 2.8 nm have revealed specific interactions between the coat and the underlying membrane. The membrane is clearly visible as two leaflets separated by 2 nm and spanned by transmembrane density. The size of the coat does not change upon DNA packaging. Instead, the number of interactions seen between the protein shell and the membrane and the order of the membrane components increase. Thus the membrane of PRD1 plays a role in assembly which is akin to that played by the nucleocapsid in other membrane viruses.  相似文献   

13.
This article describes the structure and assembly of bacteriophage PRD1, a lipid-containing virus able to infect Escherichia coli. This phage, with an approximate diameter of 65 nm, is composed of an outer protein shell surrounding a lipid-protein membrane which, in turn, encloses the nucleic acid. The phage genome consists of a single linear dsDNA molecule of about 15 kb that has a protein covalently linked to each of its 5′ ends. This protein is used as a primer in DNA replication. During assembly membrane proteins are inserted into the host cytoplasmic membrane while major capsid protein multimers are found in the cytoplasm. Capsid multimers, assisted by two nonstructural assembly factors, are capable of translocating the virus-specific membrane resulting in the formation of cytoplasmic empty particles. Subsequent DNA packaging leads to the formation of infectious virus.  相似文献   

14.
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. “Decoration” proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to ∼ 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage λ as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage λ capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to “idle” at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-γS only partially stabilizes the nucleocapsid, and a DNA is released in “quantized” steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.  相似文献   

15.
In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.  相似文献   

16.
We applied whole-cell electron cryotomography to the archaeon Sulfolobus infected by Sulfolobus turreted icosahedral virus (STIV), which belongs to the PRD1-Adeno lineage of dsDNA viruses. STIV infection induced the formation of pyramid-like protrusions with sharply defined facets on the cell surface. They had a thicker cross-section than the cytoplasmic membrane and did not contain an exterior surface protein layer (S-layer). Intrapyramidal bodies often occupied the volume of the pyramids. Mature virions, procapsids without genome cores, and partially assembled particles were identified, suggesting that the capsid and inner membrane coassemble in the cytoplasm to form a procapsid. A two-class reconstruction using a maximum likelihood algorithm demonstrated that no dramatic capsid transformation occurred upon DNA packaging. Virions tended to form tightly packed clusters or quasicrystalline arrays while procapsids mostly scattered outside or on the edges of the clusters. The study revealed vivid images of STIV assembly, maturation, and particle distribution in cell.  相似文献   

17.
Phage PRD1 and adenovirus share a number of structural and functional similarities, one of which is the vertex organization at the fivefold-symmetry positions. We developed an in vitro mutagenesis system for the linear PRD1 genome in order to make targeted mutations. The role of protein P5 in the vertex structure was examined by this method. Mutation in gene V revealed that protein P5 is essential. The absence of P5 did not compromise the particle assembly or DNA packaging but led to a deficient vertex structure where the receptor binding protein P2, in addition to protein P5, was missing. P5(-) particles also lost their DNA upon purification. Based on this and previously published information we propose a spatial model for the spike structure at the vertices. This resembles to the corresponding structure in adenovirus.  相似文献   

18.
The gene 1 protein of Salmonella bacteriophage P22 is located at the DNA packaging vertex of the mature particle. The protein is incorporated into the procapsid shell during shell assembly and is required for DNA packaging. The unassembled precursor form of the gene 1 protein has been purified from cells infected with mutants blocked in procapsid assembly. The purified 90,000-dalton protein was dimeric or monomeric; upon storage in the cold it formed 20S cyclic dodecamers. Computer filtering of negatively stained electron micrographs revealed 12 arms and knobs projecting from a central ring, with a 30-A channel at the center. Similar dodecameric rings were released from disrupted procapsid shells. These results indicate that the gene 1 protein is organized as a cyclic dodecamer within the procapsid shell and serves as the portal through which P22 DNA is threaded during DNA packaging. The presence of a 12-fold ring located at a 5-fold portal vertex appears to be a conserved structural theme of the DNA packaging apparatus of double-stranded DNA phages.  相似文献   

19.
The large terminase subunit is a central component of the genome packaging motor from tailed bacteriophages and herpes viruses. This two-domain enzyme has an N-terminal ATPase activity that fuels DNA translocation during packaging and a C-terminal nuclease activity required for initiation and termination of the packaging cycle. Here, we report that bacteriophage SPP1 large terminase (gp2) is a metal-dependent nuclease whose stability and activity are strongly and preferentially enhanced by Mn2+ ions. Mutation of conserved residues that coordinate Mn2+ ions in the nuclease catalytic site affect the metal-induced gp2 stabilization and impair both gp2-specific cleavage at the packaging initiation site pac and unspecific nuclease activity. Several of these mutations block also DNA encapsidation without affecting ATP hydrolysis or gp2 C-terminus binding to the procapsid portal vertex. The data are consistent with a mechanism in which the nuclease domain bound to the portal switches between nuclease activity and a coordinated action with the ATPase domain for DNA translocation. This switch of activities of the nuclease domain is critical to achieve the viral chromosome packaging cycle.  相似文献   

20.
The icosahedral membrane-containing double-stranded DNA bacteriophage PRD1 has a labile receptor binding spike complex at the vertices. This complex, which is analogous to that of adenovirus, is formed of the penton protein P31, the spike protein P5, and the receptor binding protein P2. Upon infection, the internal phage membrane transforms into a tubular structure that protrudes through a vertex and penetrates the cell envelope for DNA injection. We describe here a new class of PRD1 mutants lacking virion-associated integral membrane protein P16. P16 links the spike complex to the viral membrane and is necessary for spike stability. We also show that the unique vertex used for DNA packaging is intact in the P16-deficient particle, indicating that the 11 adsorption vertices and the 1 portal vertex are functionally and structurally distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号