首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the effect of football equipment and running surface on sprint performance in NCAA Division II football players (n = 68). Players were timed in the 40-yd sprint on an indoor rubberized track (Day 1) and on an outdoor, natural-grass football field (Day 2) wearing either regulation football equipment or shorts and a T-shirt. Each player was assigned randomly to perform 2 trials under each condition on each surface, and the average of the 2 trials was used for analysis. Offensive backs, defensive backs, and linebackers were significantly faster than were offensive and defensive linemen in all trials, and subjects were collapsed into 2 groups, backs and linemen. Football equipment significantly impaired performance on the track (-2.8% +/- 1.7%) and the field (-2.9% +/- 1.8%). The increase in body mass due to the football equipment was significantly greater for backs (7.2% +/- 0.7%) than for linemen (6.5% +/- 1.0%), but produced a significantly greater impairment in sprint performance in linemen (-3.3% +/- 1.1%) as compared with backs (-2.5% +/- 1.5%). Sprint performance was significantly and equivalently impaired when running on grass (backs: -2.5 +/- 1.1%; linemen: -2.8 +/- 1.4%) as compared with the track. Thus, running a 40-yd sprint in football equipment on a natural grass field impairs performance by an average of 5.5% (+/- 2.3%) compared with running indoors with minimal apparel. Football equipment and running surface significantly impair sprint performance in college football players, the effect being greater in linemen than in backs, and is likely related to differences in muscle strength/power and body fat.  相似文献   

2.
Iguchi, J, Yamada, Y, Ando, S, Fujisawa, Y, Hojo, T, Nishimura, K, Kuzuhara, K, Yuasa, Y, and Ichihashi, N. Physical and performance characteristics of Japanese division 1 collegiate football players. J Strength Cond Res 25(12): 3368-3377, 2011-This study aimed to establish the physical and performance characteristics of football players in the Japanese Division 1 collegiate football program and perform a comparison of these characteristics between Japanese (n = 208) and US Division 1 football players (n = 797). The following comparisons were made: (a) between a higher-ranked university team vs. a lower-ranked university team in Japan, (b) between different playing positions in Japan, (c) between starters and nonstarters in Japan, and (d) between playing positions in Japan vs. those in the United States. The results of this study suggest that players in the higher-ranked university team were heavier, stronger in back squat, jumped higher, and had greater power than those on the lower-ranked team. Furthermore, linemen were generally characterized by larger size, greater strength, and more fat as compared with backs. On the other hand, backs tended to be faster, smaller in physical size, have higher vertical jump height, and show greater relative strength than linemen did. Starters were taller, heavier, stronger, had more powerful, and more fat-free mass than nonstarters. Finally, our results revealed that players in the United States were superior to players in Japan in all body status comparisons (p < 0.01). This study revealed that performance and superior body composition are essential for the success of a football player. Power and strength seem to be key factors in defining good football performance.  相似文献   

3.
This study assessed body composition of Division I football players (n = 69) and compared the findings with previously reported data to ascertain whether the increase in player total body mass that has been observed over the past 10 years has been accompanied by an increase in body fat. Body composition was determined by hydrostatic weighing and the measurement of skinfold thicknesses. Total body mass, skinfold thicknesses, and body fat were greater in the current players than in players in studies conducted in the early 1980s and early 1990s. Body fat varied significantly across playing position, with the defensive backs, offensive backs, and receivers being the leanest and the offensive linemen and tight ends the most fat. There was no significant relationship between body composition and playing year or scholarship status, nor were any differences observed between ethnic groups. Of important clinical relevance was the finding that the linemen (offensive, defensive) and tight ends were on average greater than 25% body fat, the borderline for obesity in this age group. Much of this fat was deposited in the abdominal region, a significant finding when one considers the high correlation between abdominal obesity and ischemic heart disease and stroke. The current findings suggest that more attention needs to be given to the nature of the increase in body mass being achieved by today's football player to minimize long-term negative health consequences, and the findings reemphasize the need identified in earlier studies of the importance of detraining programs for these athletes.  相似文献   

4.
Energy cost is a major factor influencing the tolerable thermal load, particularly during exercise in the heat. However, no data exist on the metabolic cost of football practice, although a value of 35% of maximal aerobic capacity (VO(2)max) has been estimated. The energy cost and thermoregulatory response of offensive linemen (OL) was measured wearing different American football ensembles during a simulated half of football practice in the heat. Five collegiate offensive linemen (133 kg, 20% fat, 42 ml x kg(-1) x min(-1) maximal oxygen uptake) completed each of four 60-minute test sessions in an environmental chamber (28 degrees C, 55% relative humidity [RH]) wearing shorts (S), helmet (H), helmet and shoulder pads (HS), and full gear (FUL). Core temperature in the digestive tract (TGI) was obtained using an ingestible sensor. During simulated football drills (e.g., repetitions of drive blocking), exercise intensity ranged from 30 to 81% VO(2)max but averaged 55%VO(2)max (6.7 METS) overall. Blood lactate remained >5 mmol x L(-1), and heart rate (HR) averaged 79%HRmax. Equipment had a significant effect on %VO(2)max but only during recovery between drills with HS (61.4 +/- 3.7%) compared with H (53.3 +/- 6.9%) and S (40.1 +/- 8.5%). The TGI was higher (p < 0.05) with HS compared with H at several time-points after 30 minutes. Football practice for OL elicits a significantly higher overall metabolic cost (>6 METS, >50%VO(2)max) than assumed in previous studies. The addition of shoulder pads increases core temperature and energy cost, especially during recovery between active drills in unacclimatized linemen.  相似文献   

5.
The purpose of this study was to evaluate physical demands of football players during preseason practices in the heat. Furthermore, we sought to compare how physical demands differ between positions and playing status. Male National Collegiate Athletic Association Division 1 football players (n = 49) participated in 9 practice sessions (142 ± 16 minutes per session; wet bulb globe temperature (WBGT) 28.75 ± 2.11°C) over 8 days. Heart rate (HR) and global positioning system data were recorded throughout the entirety of each practice to determine the distance covered (DC), velocity (V), maximal HR (HRmax), and average HR (HRavg). The subjects were divided into 2 groups: linemen (L) (N = 25; age: 22 ± 1 years, weight: 126 ± 16 kg, height: 190 ± 4 cm,) vs. nonlinemen (NL) (N = 24; age: 21 ± 1 years, weight: 91 ± 11 kg, height: 183 ± 8 cm) and starters (S) (N = 17; age: 21 ± 1 years, weight: 118 ± 21 kg, height: 190 ± 7 cm) vs. nonstarters (NS) (N = 32; age: 20 ± 1 years, weight: 105 ± 22 kg, height: 185 ± 7 cm) for statistical analysis. The DC (3,532 ± 943 vs. 2,573 ± 489 m; p = 0.001) and HRmax (201 ± 9 vs. 194 ± 11 b·min(-1); p = 0.025) were significantly greater in NL compared with that in L. In addition, NL spent more time (p < 0.0001) and covered more distance (p = 0.002) at higher velocities than L did. Differences between S vs. NS were observed (p = 0.008, p = 0.031), with S obtaining higher velocities than NS did. Given the demands of their playing positions, NL were required to cover more distance at higher velocities, resulting in a greater HRmax than that of L. Therefore, it appears that L engage in more isometric work than NL do. In addition, the players exposed to similar practice demands provide similar work output during preseason practice sessions regardless of their playing status.  相似文献   

6.
7.
The purpose of this study was to compare normative data from present Division I National Collegiate Athletic Association football teams to those from 1987. Players were divided into 8 positions for comparisons: quarterbacks (QB), running backs (RB), receivers (WR), tight ends (TE), offensive linemen (OL), defensive linemen (DL), linebackers (LB), and defensive backs (DB). Comparisons included height, body mass, bench press and squat strength, vertical jump, vertical jump power, 40-yd-dash speed, and body composition. Independent t-tests were used to analyze the data with level of significance set at p < 0.01. Significant differences (p < 0.01) were found in 50 of 88 comparisons. From 1987 until 2000, Division I college football players in general have become bigger, stronger, faster, and more powerful. Further research is warranted to investigate if these trends will continue.  相似文献   

8.
The present paper describes a physical model that estimates the globe and the natural wet bulb temperatures from the main parameters generally recorded at meteorological weather stations, in order to predict the wet bulb globe temperature (WBGT) heat stress index for outdoor environments. The model is supported by a thermal analysis of the globe and the natural wet bulb temperature sensors. The results of simultaneous measurements of the WBGT and climatological parameters (solar radiation, wind velocity, humidity, etc.) are presented and used to validate the model. The final comparison between calculated and measured values shows a good agreement with the experimental data, with a maximum absolute deviation of 2.8% for the globe temperature and 2.6% for the natural wet bulb temperature and the WBGT index. The model is applied to the design reference year for Coimbra, Portugal, in order to illustrate its preventative capabilities from a practical point of view. The results clearly show that during the summer there is a critical daily period (1200–1600 hours, local standard time) during which people working outdoors should not be allowed to perform their normal activities.  相似文献   

9.
The purpose of this study was to examine the effects of both intensity and volume of training during a 2 d.wk(-1) in-season resistance-training program (RTP) for American football players. Fifty-three National Collegiate Athletic Association Division III football players were tested in the 1 repetition maximum (1RM) bench press and 1RM squat on the first day of summer training camp (PRE) and during the final week of the regular season (POST). Subjects were required to perform 3 sets of 6-8 repetitions per exercise. Significant strength improvements in squat were observed from PRE (155.0 +/- 31.8 kg) to POST (163.3 +/- 30.0 kg), whereas no PRE to POST changes in bench press were seen (124.7 +/- 21.0 kg vs.123.9 +/- 18.6 kg, respectively). Training volume and training compliance were not related to strength improvement. Further analysis showed that athletes training at >or=80% of their PRE 1RM had significantly greater strength improvements than athletes training at <80% of their PRE 1RM, for both bench press and squat. Strength improvements can be seen in American football players, during an in-season RTP, as long as exercise intensity is >or=80% of the 1RM.  相似文献   

10.
11.
There are very few data available on the relationship between sporting activities, endocrine levels and changes in anthropometric measurements during growth. In order to study these relationships, we have made measurements of growth, changes in physical conformation and the plasma levels of several hormones [cortisol, dehydroepiandrosterone sulphate (DHEA-S), testosterone, growth hormone, somatomedin C, insulin, glycaemia and haemoglobin A1C] in 175 boys, aged 10-16 years, who have played football at a competitive level and in 224 boys, severing as controls, who have never performed sporting activities regularly. The football players were divided into prepubertal and pubertal subjects (10-11.99 years, 12-13.99 years and 14-16 years, chronological and bone age groups). Our results showed no significant differences in the growth indices between prepubertal athletes and controls, but the plasma level of DHEA-S was significantly higher (P less than 0.05) in the athletes. Pubertal football players, however, were significantly taller than the control subjects, particularly at 14-16 years chronological age. There were no such significant differences when bone age was considered. The pubertal football players were also more advanced in all biological indices of maturity, i.e. pubic hair, testicular volume and bone age. The increase in DHEA-S in pubertal football players, already seen in prepubertals, was also combined with a significant increase in testosterone, growth hormone and cortisol levels. Thus, in football players the DHEA-S level is already higher during prepuberty. This increase thus precedes all other indices of growth and maturation associated with puberty. We hypothesize that, while not excluding the possible influence of selection, as ours is a cross-sectional study, adrenal hyperactivity may be mainly responsible for the earlier onset of pubertal growth and maturity in exercising males.  相似文献   

12.
The relationships between football playing ability (FPA) and selected anthropometric and performance measures were determined among NCAA Division I-A football players (N = 40). Football playing ability (determined by the average of coaches' rankings) was significantly correlated with vertical jump (VJ) in all groups (offense, defense, and position groups of wide receiver-defensive back, offensive linemen-defensive linemen, and running back-tight end-linebacker). Eleven of 50 correlations (groups by variables), or 22%, were important for FPA. Five of the 11 relationships were related to VJ. Forward stepwise regression equations for each group explained over half of the criterion variable, FPA, as indicated by the R(2) values for each model. Vertical jump was the prime predictor variable in the equations for all groups. The findings of this study are discussed in relation to the specificity hypothesis. Strength and conditioning programs that facilitate the capacity for football players to develop forceful and rapid concentric action through plantar flexion of the ankle, as well as extension of the knee and hip, may be highly profitable.  相似文献   

13.
The objective of this study is to evaluate the dietary practices of 28 football athletes on a National Collegiate Athletic Association (NCAA) Division I team using 3-day diet records. Student athletes completed 3-day diet records at 2 individual points of time, when no training table was available. Diet records were evaluated and were compared with the Third National Health and Nutrition Survey (NHANES III) data for the same ages and gender group. No differences in dietary practices of collegiate football athletes were observed when compared with data for the same ages and gender group culled from NHANES III. Inadequacies in energy intake for activity level were significant (p < 0.05). Influences of fad dieting trends were noted when the diets were mapped onto the United States Department of Agriculture (USDA) food guide pyramid. Changes in diet would be necessary to sustain the activity level of these athletes.  相似文献   

14.
Injuries stemming from shoulder instability are very common among athletes participating in contact sports, such as football. Previous research has shown that increased laxity negatively affects the function of the sensorimotor system potentially leading to a pathological cycle of shoulder dysfunction. Currently, there are no data detailing such effects among football players. Therefore, the purpose of this study was to examine the differences in upper extremity sensorimotor control among football players compared with that of a control group. Forty-five collegiate football players and 70 male control subjects with no previous experience in contact sports participated. All the subjects had no recent history of upper extremity injury. Each subject performed three 30-second upper extremity balance trials on each arm. The balance trials were conducted in a single-arm push-up position with the test arm in the center of a force platform and the subjects' feet on a labile device. The trials were averaged, and the differences in radial area deviation between groups were analyzed using separate 1-way analyses of variance (p < 0.05). The football players showed significantly more radial area deviation of the dominant (0.41 ± 1.23 cm2, p = 0.02) and nondominant arms (0.47 ± 1.63 cm2, p = 0.03) when compared with the control group. These results suggest that football players may have decreased sensorimotor control of the upper extremity compared with individuals with no contact sport experience. The decreased upper extremity sensorimotor control among the football players may be because of the frequent impacts accumulated during football participation. Football players may benefit from exercises that target the sensorimotor system. These findings may also be beneficial in the evaluation and treatment of various upper extremity injuries among football players.  相似文献   

15.
The impact of sub-concussive head hits (sub-CHIs) has been recently investigated in American football players, a population at risk for varying degrees of post-traumatic sequelae. Results show how sub-CHIs in athletes translate in serum as the appearance of reporters of blood-brain barrier disruption (BBBD), how the number and severity of sub-CHIs correlate with elevations of putative markers of brain injury is unknown. Serum brain injury markers such as UCH-L1 depend on BBBD. We investigated the effects of sub-CHIs in collegiate football players on markers of BBBD, markers of cerebrospinal fluid leakage (serum beta 2-transferrin) and markers of brain damage. Emergency room patients admitted for a clinically-diagnosed mild traumatic brain injury (mTBI) were used as positive controls. Healthy volunteers were used as negative controls. Specifically this study was designed to determine the use of UCH-L1 as an aid in the diagnosis of sub-concussive head injury in athletes. The extent and intensity of head impacts and serum values of S100B, UCH-L1, and beta-2 transferrin were measured pre- and post-game from 15 college football players who did not experience a concussion after a game. S100B was elevated in players experiencing the most sub-CHIs; UCH-L1 levels were also elevated but did not correlate with S100B or sub-CHIs. Beta-2 transferrin levels remained unchanged. No correlation between UCH-L1 levels and mTBI were measured in patients. Low levels of S100B were able to rule out mTBI and high S100B levels correlated with TBI severity. UCH-L1 did not display any interpretable change in football players or in individuals with mild TBI. The significance of UCH-L1 changes in sub-concussions or mTBI needs to be further elucidated.  相似文献   

16.
The purpose of this study was to present a profile of body size and composition of National Football League (NFL) players prior to the start of the regular season. Fifty-three members of the Indianapolis Colts professional football team were measured for height, body mass, and percentage body fat using the BOD POD air-displacement plethysmography system during summer camp of the 2003 football season. These data were categorized by position for comparison with previous studies of NFL football players. The relationships observed were as follows (= represents nonsignificant; > represents p < or = 0.05): Height: Offensive Line = Defensive Line = Quarterbacks/Kickers/Punters = Tight Ends > Linebackers > Running Backs = Wide Receivers = Defensive Backs. Body Mass: Offensive Line = Defensive Line > Tight Ends = Linebackers > Running Backs = Quarterbacks/ Kickers/Punters > Wide Receivers = Defensive Backs. Percentage Body Fat: Offensive Line > Defensive Line > Quarterbacks/ Kickers/Punters = Linebackers = Tight Ends > Running Backs = Wide Receivers = Defensive Backs. Comparisons to teams in the 1970s indicate that body mass has increased only for offensive and defensive linemen; however, height and body fat among player positions have not dramatically changed. Furthermore, the body mass index is not an accurate measure or representation of body fat or obesity in NFL players. These data provide a basic template for size profiles and differences among various positions and allow comparisons with other studies for changes in the NFL over the past 3 decades.  相似文献   

17.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

18.
This study aims to analyze the difference in biomechanical properties of football players at different levels when kicking the football with the inner edge of the instep. Before the experiment, ten football players were selected; five were higher than the national level (group A), and the other five players were lower than the national level II (group B). During the experiment, the motion process was captured by a high-speed camera for biomechanical analysis. It was found that in group A, the thigh and leg swung in less time and larger amplitude, the acceleration of backswing and forward swing of the leg was larger, and the angular velocity of forward swing was also larger. At the moment of touching the ball, in the sagittal plane, the ankle joint angle and angular velocity of group A were larger than those of group B (P < 0.05). In conclusion, the high-level athletes can complete the high-quality kicking through a larger swing amplitude and speed of the kicking leg. In the training process, the athletes should pay attention to the speed and strength of the kicking leg to improve the kicking level.  相似文献   

19.
The objective of this study is to identify markers of the addictive condition developing in athletes during exercise deprivation by analyzing electroencephalograms (EEGs), electromyograms (EMGs), skin temperature measurements, sympathetic nervous system activity, levels of anxiety and depression (by psychological tests). A cohort of professional football players (N = 50) voluntarily participated in the study. The athletes were tested under two test conditions: during active training sessions and during exercise deprivation (for seven days). The analyzed results have shown that the functional state of athletes with exercise addiction (due to exercise deprivation), compared with athletes showing no addictive behavior, was characterized by lower brain bioelectric activity (a decrease in the α-rhythm amplitude and power), growth in the muscular tension, increased sympathetic activity, and elevated levels of anxiety and depression. We have concluded that an athlete’s functional state during exercise deprivation is an important predictor for exercise dependence. A prolonged exercise deprivation causes intense psychophysiological changes in the body of athletes inclined to exercise addiction. The obtained results may be useful for experts in the field of sports medicine, as well as for further studies in different types of addictions.  相似文献   

20.
The purpose of this study was to explore the effects of 5 weeks of eccentrically loaded and unloaded jump squat training in experienced resistance-trained athletes during the strength/ power phase of a 15-week periodized off-season resistance training program. Forty-seven male college football players were randomly assigned to 1 of 3 groups. One group performed the jump squat exercise using both concentric and eccentric phases of contraction (CE; n = 15). A second group performed the jump squat exercise using the concentric phase only (n = 16), and a third group did not perform the jump squat exercise and served as control (CT; n = 16). No significant differences between the groups were seen in power, vertical jump height, 40-yd sprint speed and agility performance. In addition, no differences between the groups were seen in integrated electromyography activity during the jump squat exercise. Significant differences between the CE and CT groups were seen in Delta 1RM squat (65.8 and 27.5 kg, respectively) and Delta 1RM power clean (25.9 and 3.8 kg, respectively). No other between-group differences were observed. Results of this study provide evidence of the benefits of the jump squat exercise during a short-duration (5-week) training program for eliciting strength and power gains. In addition, the eccentric phase of this ballistic movement appears to have important implications for eliciting these strength gains in college football players during an off-season training program. Thus, coaches incorporating jump squats (using both concentric and eccentric phases of contraction) in the off-season training programs of their athletes can see significant performance improvements during a relatively short duration of training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号