首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hammer E  Heilbronn R  Weger S 《FEBS letters》2007,581(28):5418-5424
Human Topors has originally been identified as binding partner of p53 and DNA topoisomerase I (TOP1). It can function as both an ubiquitin and SUMO-1 E3 ligase for p53. Here we demonstrate that Topors enhances the formation of high-molecular weight SUMO-1 conjugates of TOP1 in a reconstituted in vitro system and also in human osteosarcoma cells, similar to treatment with CPT. In contrast to the situation observed with p53, overall sumoylation levels were rather unaffected. Experiments with TOP1 point mutants strongly suggest that the high-molecular weight conjugates represent SUMO-1 chains formed on a limited number of SUMO-1 acceptor sites.  相似文献   

2.
3.
Type I collagen is the most abundant protein in the human body, produced by folding of two α1(I) polypeptides and one α2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5′ untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5′ stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5′ stem-loop. The Kd for binding of LARP6 to the 5′ stem-loop is 1.4 nM. LARP6 binds the 5′ stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5′ stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5′ stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.  相似文献   

4.
PHF1 associates with the Polycomb repressive complex 2 and it was demonstrated to stimulate its H3K27-trimethylation activity. We studied the interaction of the PHF1 Tudor domain with modified histone peptides and found that it recognizes H3K36me3 and H3tK27me3 (on the histone variant H3t) and that it uses the same trimethyllysine binding pocket for the interaction with both peptides. Since both peptide sequences are very different, this result indicates that reading domains can have dual specificities. Sub-nuclear localization studies of full-length PHF1 in human HEK293 cells revealed that it co-localizes with K27me3, but not with K36me3, and that this co-localization depends on the trimethyllysine binding pocket indicating that K27me3 is an in vivo target for the PHF1 Tudor domain. Our data suggest that PHF1 binds to H3tK27me3 in human chromatin, and H3t has a more general role in Polycomb regulation.  相似文献   

5.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

6.
Kim YH  Sung KS  Lee SJ  Kim YO  Choi CY  Kim Y 《FEBS letters》2005,579(27):6272-6278
The modification of homeodomain-interacting protein kinase 2 (HIPK2) by small ubiquitin-like modifier 1 (SUMO-1) plays an important role in its targeting into the promyelocytic leukemia body, as well as in its differential interaction with binding partner, but the desumoylation of HIPK2 by SUMO-specific proteases is largely unknown. In this study, we show that HIPK2 is a desumoylation target for the SUMO-specific protease SENP1 that shuttles between the cytoplasm and the nucleus. Mutation analyses reveal that SENP1 contains the nuclear export sequence (NES) within the extreme carboxyl-terminal region, and SENP1 is exported to the cytoplasm in a NES-dependent manner. Sumoylated HIPK2 are deconjugated by SENP1 both in vitro and in cultured cells, and the desumoylation is enhanced either by the forced translocation of SENP1 into the nucleus or by the SENP1 NES mutant. Concomitantly, desumoylation induces dissociation of HIPK2 from nuclear bodies. These results demonstrate that HIPK2 is a target for SENP1 desumoylation, and suggest that the desumoylation of HIPK2 may be regulated by the cytoplasmic-nuclear shuttling of SENP1.  相似文献   

7.
LEA (late embryogenesis abundant) proteins are intrinsically disordered proteins that contribute to stress tolerance in plants and invertebrates. Here we show that, when both plant and animal LEA proteins are co-expressed in mammalian cells with self-aggregating polyglutamine (polyQ) proteins, they reduce aggregation in a time-dependent fashion, showing more protection at early time points. A similar effect was also observed in vitro, where recombinant LEA proteins were able to slow the rate of polyQ aggregation, but not abolish it altogether. Thus, LEA proteins act as kinetic stabilisers of aggregating proteins, a novel function in protein homeostasis consistent with a proposed role as molecular shields.  相似文献   

8.
Lee JH  Rho SB  Park SY  Chun T 《FEBS letters》2008,582(8):1210-1218
Yeast two-hybrid screening was conducted using a human ovary cDNA library to search for a novel binding protein using transforming growth factor-beta stimulated clone-22 (TSC-22). The selected protein was fortilin, which has been characterized as a nuclear anti-apoptotic protein. Overexpression of fortilin in ovarian carcinoma cells reversed TSC-22-mediated apoptosis, and the inhibition of fortilin expression via small interfering RNA (siRNA) resulted in an increase in the apoptosis of ovarian carcinoma cells. Moreover, fortilin overexpression promoted the degradation of TSC-22. Thus, an interaction between fortilin and TSC-22 prevents apoptosis via the destabilization of TSC-22 in ovarian carcinoma cells.  相似文献   

9.
Shi YQ  Liao SY  Zhuang XJ  Han CS 《Gene》2011,485(2):153-159
Ankyrin repeat domain 37 (Ankrd37), a protein containing ankyrin repeats (ARs) and a putative nuclear localization signal (NLS), is highly conserved from zebrafish to humans. In mouse testes, Ankrd37 protein was initially present in the cytoplasm of elongating spermatids, and finally restricted to the nuclei of spermatozoa during spermatogenesis. Ankrd37 bound to feminization 1 homolog b (Fem1b) as indicated by yeast two-hybrid screening and co-immunoprecipitation assays. Ankrd37 facilitated the transport of Fem1b protein from cytoplasm to nuclei in co-transfected CHO cells. In addition, the protein level of Ankrd37 was decreased in a Fem1b dose-dependent manner as shown by the transfection experiments, and Ankrd37 was ubiquitinated in the presence of Fem1b. As the nematode Fem-1 has been shown to target its downstream effector TRA-1 for ubiquitin-mediated degradation, we report in the present study that mouse Fem1b targets Ankrd37 for degradation in the same manner.  相似文献   

10.
11.
Costunolide is an active sesquiterpene lactone of medicinal herbs with anti-inflammatory and potential anti-cancer activity. Nevertheless, the pharmacological pathways of costunolide have not yet been fully elucidated. In this study we showed that costunolide exerts a dose-dependent antiproliferative activity in the human breast cancer MCF-7 cells. In addition, light microscopy observations indicated that costunolide affected nuclear organization and reorganized microtubule architecture. The antiproliferative and antimicrotubular effects of costunolide were not influenced by paclitaxel, well-known microtubule-stabilizing anticancer agent. The microtubule-interacting activity of costunolide was confirmed by in vitro studies on purified microtubular protein. In fact, costunolide demonstrated polymerizing ability, by inducing the formation of well organized microtubule polymers. Our data suggest an interaction of costunolide with microtubules, which may represent a new intracellular target for this drug.  相似文献   

12.
The function of the ubiquitous actin-binding protein, caldesmon (l-CaD) in mammalian non-muscle cells remains elusive. During mitosis, l-CaD becomes markedly phosphorylated at Ser497 and Ser527 (in the rat sequence), therefore, it has been suggested that l-CaD is involved in cytokinesis by inhibiting the actomyosin interaction until it is phosphorylated, although direct in vivo evidence is still missing. In the present study, we used F-actin staining and specific antibodies against these two phosphorylation sites of l-CaD to simultaneously monitor actin assembly and l-CaD phosphorylation. Our observations demonstrated that the level of l-CaD phosphorylation undergoes dynamic changes during the cell cycle. The spatial and temporal distributions of phospho-CaD do not correlate with cytokinesis per se, but rather, with the level of actin bundles in a reciprocal manner. The highest l-CaD phosphorylation level coincides with the disassembly of actin cytoskeleton during mitotic cell rounding. Ser-to-Ala mutations at these two positions prevent stress fibers from disassembly upon migratory stimulation. In addition, phospho-CaD appears to colocalize with nascent focal adhesion complexes during postmitotic spreading. These findings suggest that l-CaD phosphorylation plays an important role not only in cytoskeleton remodeling during cell shape changes, but also in cell spreading and migration.  相似文献   

13.
Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-beta1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. In ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.  相似文献   

14.
Hoshino A  Fujii H 《FEBS letters》2007,581(5):975-980
Cytokines control cell differentiation, proliferation, and function by regulating gene expression program. Physiological roles and induction mechanisms of cytokine-inducible genes are not fully understood. Here, we identified a novel immediate-early cytokine-responsive gene, cyclon (cytokine-induced protein with coiled-coil domain), which is induced in a hematopoietic cell line by interleukin 3 (IL-3). cyclon gene encodes a phosphorylated nuclear protein consisting of repetitive sequences in the amino-terminus and a coiled-coil domain in the carboxyl-terminus. A novel transient reporter assay revealed that mouse cyclon promoter contains redundant elements for IL-3-induced gene expression.  相似文献   

15.
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.  相似文献   

16.
Apoptin, a small protein encoded by chicken anemia virus (CAV), induces cell death specifically in cancer cells. In normal cells, Apoptin remains in the cytoplasm; whereas in cancerous cells, it migrates into the nucleus and kills the cell. Cellular localization appears to be crucial. Through a yeast two-hybrid screen, we identified human Peptidyl-prolyl isomerase-like 3 (Ppil3) as one of the Apoptin-associated proteins. Ppil3 could bind Apoptin directly, and held Apoptin in cytoplasm even in tumor cells. We then demonstrated that the nuclearcytoplasmic distribution of Apoptin is related to the expression level of intrinsic Ppil3. Moreover, extrinsic modifying of Ppil3 levels also resulted in nuclearcytoplasmic shuffling of Apoptin. The Apoptin P109A mutant, located between the putative nuclear localization and export signals, could significantly impair the function of Ppil3. Our results suggest a new direction for the localization mechanism study of Apoptin in cells.  相似文献   

17.
Cukier IH  Li Y  Lee JM 《FEBS letters》2007,581(8):1661-1672
Substantial actin remodelling occurs prior to mitosis as cells alter their shape in preparation for cytokinesis. In mammalian cells, mitosis is initiated by a heterodimer of cyclin B1 and the cyclin dependent kinase 1 (Cdk1) serine/threonine kinase. In this report. we show that human cyclin B1 binds the actin cross-linking protein Filamin-A (FLNa). The proteins co-immunoprecipitate and co-localize in mitotic human cells. We find that cyclin B1/Cdk1 can phosphorylate FLNa in vitro and reduce its ability to gelate actin. We have also identified serine 1436 as one FLNa residue phosphorylated by cyclin B1/Cdk1 in vitro. Our results suggest a role for cyclin B1/Cdk1 in FLNa-dependent actin remodelling.  相似文献   

18.
Despite their fundamental importance, the dynamics of signaling pathways in living cells remain challenging to study, due to a lack of non-invasive tools for temporal assessment of signal transduction in desired cell models. Here we report a dual-reporter strategy that enables researchers to monitor signal transduction in mammalian cells in real-time, both temporally and quantitatively. This is achieved by co-expressing green fluorescent protein and firefly luciferase in response to signaling stimuli. To display the versatility of this approach, we constructed and assessed eight unique signaling pathway reporters. We further validated the system by establishing stable NF-κB pathway reporter cell lines. Using these stable cell lines, we monitored the activity of NF-κB-mediated inflammatory pathway in real-time, both visually and quantitatively. Live visualization has the power to reveal individual cell responses and is compatible with single cell analysis, In addition, we provide evidence that this system is readily amenable to a high-throughput format. Together, our findings demonstrate the potential of the dual reporter system, which significantly improves the capacity to study signal transduction pathways in mammalian cells.  相似文献   

19.
RASSF5 is a member of the Ras association domain family, which is known to be involved in cell growth regulation. Expression of RASSF5 is extinguished selectively by epigenetic mechanism(s) in different cancers and cell lines, and reexpression usually suppresses cell proliferation and tumorigenicity. To date, the mechanism regulating RASSF5 nuclear transport and its role in cell growth regulation remains unclear. Using heterokaryon assay, we have demonstrated that RASSF5 shuttles between the nucleus and the cytoplasm, and its export from the nucleus is sensitive to leptomycin B, suggesting that RASSF5 is exported from the nucleus by a CRM-1-dependent export pathway. We further demonstrate that RASSF5 contains a hydrophobic-rich nuclear export signal (NES) towards the C-terminus and two nuclear localization signals—one each at the N-terminus and the C-terminus. Combination of mutational and immunofluorescence analyses suggests that the functional NES residing between amino acids 260 and 300 in the C-terminus is necessary for the efficient export of RASSF5 from the nucleus. In addition, substitution of conserved hydrophobic residues within the minimal NES impaired RASSF5 export from the nucleus. Furthermore, exchange of proline residues within the putative Src homology 3 binding motifs altered the export of RASSF5 from the nucleus despite the presence of functional NES, suggesting that multiple domains independently modulate the nucleocytoplasmic transport of RASSF5. Interestingly, the present investigation provided evidence that RASSF5 interacts with the tyrosine kinase Lck through its C-terminal Src homology 2 binding motif and showed that Lck-mediated phosphorylation is critical for the efficient translocation of RASSF5 into the nuclear compartment. Interestingly, our data demonstrate that wild type and nuclear export defective (ΔNES) mutant of RASSF5 but not the import defective mutant of accumulate the cells at G1/S phase and induce apoptosis. Furthermore, the Lck-interaction-defective mutant of RASSF5 induces apoptosis without altering cell cycle progression, suggesting that RASSF5 induces apoptosis independent of cell cycle arrest. Together, our data demonstrate that interaction with Lck is critical for RASSF5 phosphorylation, which in turn regulates the cell growth control activity of RASSF5. Finally, we have shown that RASSF5 encodes four splice variants and is translocated to the nucleus by the classical nuclear import pathway. One of the splice variants, RASSF5C, was found to be localized in the cytoplasm and translocated into the nucleus upon leptomycin B treatment despite the absence of N-terminal nuclear localization signal, suggesting that distribution of RASSF5 variants in different cellular compartments may be critical for Ras-dependent cell growth regulation. Collectively, the present investigation provided evidence that Lck-mediated phosphorylation regulates the nucleocytoplasmic shuttling and cell growth control activities of RASSF5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号