首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in the structure of the bound ssDNA. The free energy of binding includes a conformational transition of the protein. Large positive enthalpy changes accompanying the ASFV pol X-ssDNA association indicate that conformational changes of the complex are induced by the engagement of the N-terminal domain. The enthalpy changes are offset by large entropy changes accompanying the DNA binding to the C-terminal domain and the total DNA-binding site, predominantly resulting from the release of water molecules.  相似文献   

2.
Recent 15N and 13C spin-relaxation dispersion studies of fast-folding mutants of the Fyn SH3 domain have established that folding proceeds through a low-populated on-pathway intermediate (I) where the central beta-sheet is at least partially formed, but without interactions between the NH2- and COOH-terminal beta-strands that exist in the folded state (F). Initial studies focused on mutants where Gly48 is replaced; in an effort to establish whether this intermediate is a general feature of Fyn SH3 folding a series of 15N relaxation experiments monitoring the folding of Fyn SH3 mutants N53P/V55L and A39V/N53P/V55L are reported here. For these mutants as well, folding proceeds through an on-pathway intermediate with similar features to those observed for G48M and G48V Fyn SH3 domains. However, the 15N chemical shifts extracted for the intermediate indicate pronounced non-native contacts between the NH2 and COOH-terminal regions not observed previously. The kinetic parameters extracted for the folding of A39V/N53P/V55L Fyn SH3 from the three-state folding model F<-->I<-->U are in good agreement with folding and unfolding rates extrapolated to zero denaturant obtained from stopped-flow experiments analyzed in terms of a simplified two-state folding reaction. The folding of the triple mutant was studied over a wide range of temperatures, establishing that there is no difference in heat capacities between F and I states. This confirms a compact folding intermediate structure, which is supported by the 15N chemical shifts of the I state extracted from the dispersion data. The temperature-dependent relaxation data simplifies data analysis because at low temperatures (< 25 degrees C) the unfolded state (U) is negligibly populated relative to I and F. A comparison between parameters extracted at low temperatures where the F<-->I exchange model is appropriate with those from the more complex, three-state model at higher temperatures has been used to validate the protocol for analysis of three-site exchange relaxation data.  相似文献   

3.
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4′,6-diamidino-2-phenylindole (DAPI) with the right handed Watson–Crick base paired A-form and the left-handed Hoogsteen base paired HL-form of poly(rC)·poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and HL-form of poly(rC)·poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the HL-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the HL-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and HL-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA–ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.  相似文献   

4.
Improvements on the computational methods for affinity prediction from the structure of protein-ligand complexes require a better understanding of the nature of molecular interactions and biomolecular recognition principles. In the present contribution, the binding of two chemically closely related human aldose reductase inhibitors had been studied by high-resolution X-ray analysis (0.92-1.35 ?) and isothermal titration calorimetry against a series of single-site mutants of the wild-type protein. A crucial threonine thought to be involved in a short bromine-to-oxygen halogen bond to the inhibitors in the wild type has been mutated to the structurally similar residues alanine, cysteine, serine and valine. Overall, structurally, the binding mode of the inhibitors is conserved; however, small but significant geometrical adaptations are observed as a consequence of the spatial and electronic changes at the mutation site. They involve the opening of a central bond angle and shifts in consequence of the lost or gained halogen bonds. Remarkably, the tiny structural changes are responded by partly strong modulation of the thermodynamic profiles. Even though the free energy of binding is maximally perturbed by only 7 kJ/mol, much stronger modulations and shifts in the enthalpy and entropy signatures are revealed, which indicate a pronounced enthalpy/entropy compensation. However, an explanatory correlation can be detected when facing these perturbances against the small structural changes. This also provides deeper insights into how single-site mutations can alter the selectivity profile of closely related ligands against a target protein.  相似文献   

5.
alphabeta T-cell receptors (TCRs) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van't Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases, the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but also for understanding specifics of individual interactions and the engineering of TCRs with desired molecular recognition properties.  相似文献   

6.
We analyzed the binding of the 7C8 antibody to the chloramphenicol phosphonate antigens—one containing a trifluoroacetyl group (CP‐F) and the other containing an acetyl group (CP‐H)—by using isothermal titration calorimetry (ITC). The thermodynamic difference due to the substitution of F by H was evaluated using free energy calculations based on molecular dynamics (MD) simulations. We have previously shown that another antibody, namely, 6D9, binds more weakly to CP‐H than to CP‐F, mainly due to the different hydration free energies of the dissociated state and not due to the unfavorable hydrophobic interactions with the antibody in the bound state. Unlike in the binding of the trifluoroacetyl group with 6D9, in its binding with 7C8, it is exposed to the solvent, as seen in the crystal structure of the complex of 7C8 with CP‐F. The thermodynamic analysis performed in this study showed that the binding affinity of 7C8 for CP‐H is similar to that for CP‐F, but this binding to CP‐H is accompanied with less favorable enthalpy and more favorable entropy changes. The free energy calculations indicated that, upon the substitution of F by H, enthalpy and entropy changes in the associated and dissociated states were decreased, but the magnitude of enthalpy and entropy changes in the dissociated state was larger than that in the associated state. The differences in binding free energy, enthalpy, and entropy changes determined by the free energy calculations for the substitution of F by H are in good agreement with the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Isothermal titration calorimetry is able to provide accurate information on the thermodynamic contributions of enthalpy and entropy changes to free energies of binding. The Structure/Calorimetry of Reported Protein Interactions Online database of published isothermal titration calorimetry studies and structural information on the interactions between proteins and small-molecule ligands is used here to reveal general thermodynamic properties of protein-ligand interactions and to investigate correlations with changes in solvation. The overwhelming majority of interactions are found to be enthalpically favoured. Synthetic inhibitors and biological ligands form two distinct subpopulations in the data, with the former having greater average affinity due to more favourable entropy changes on binding. The greatest correlation is found between the binding free energy and apolar surface burial upon complex formation. However, the free-energy contribution per unit area buried is only 30-50% of that expected from earlier studies of transfer free energies of small molecules. A simple probability-based estimator for the maximal affinity of a binding site in terms of its apolar surface area is proposed. Polar surface area burial also contributes substantially to affinity but is difficult to express in terms of unit area due to the small variation in the amount of polar surface buried and a tendency for cancellation of its enthalpic and entropic contributions. Conventionally, the contribution of apolar desolvation to affinity is attributed to gain of entropy due to solvent release. Although data presented here are supportive of this notion, because the correlation of entropy change with apolar surface burial is relatively weak, it cannot, on present evidence, be confidently considered to be correct. Further, thermodynamic changes arising from small differences between ligands binding to individual proteins are relatively large and, in general, uncorrelated with changes in solvation, suggesting that trends identified across widely differing proteins are of limited use in explaining or predicting the effects of ligand modifications.  相似文献   

9.
Arnulphi C  Jin L  Tricerri MA  Jonas A 《Biochemistry》2004,43(38):12258-12264
The interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with and without free cholesterol (FC) was studied by isothermal titration calorimetry and circular dichroism spectroscopy. Parameters reported are the affinity constant (K(a)), the number of protein molecules bound per vesicle (n), enthalpy change (DeltaH degrees), entropy change (DeltaS degrees ), and the heat capacity change (DeltaC(p) degrees). The binding process of apoA-I to SUVs of POPC plus 0-20% (mole) FC was exothermic between 15 and 37 degrees C studied, accompanied by a small negative entropy change, making enthalpy the main driving force of the interaction. The presence of cholesterol in the vesicles increased the binding affinity and the alpha-helix content of apoA-I but lowered the number of apoA-I bound per vesicle and the enthalpy and entropy changes per bound apoA-I. Binding affinity and stoichiometry were essentially invariant of temperature for binding to SUVs of POPC/FC at a molar ratio of 6/1 at (2.8-4) x 10(6) M(-1) and 2.4 apoA-I molecules bound per vesicle or 1.4 x 10(2) phospholipids per bound apoA-I. A plot of DeltaH degrees against temperature displayed a linear behavior, from which the DeltaC(p) degrees per mole of bound apoA-I was calculated to be -2.73 kcal/(mol x K). These results suggested that binding of apoA-I to POPC vesicles is characterized by nonclassical hydrophobic interactions, with alpha-helix formation as the main driving force for the binding to cholesterol-containing vesicles. In addition, comparison to literature data on peptides suggested a cooperativity of the helices in apoA-I in lipid interaction.  相似文献   

10.
Han F  Taulier N  Chalikian TV 《Biochemistry》2005,44(28):9785-9794
We employed ultrasonic velocimetry, high-precision densimetry, circular dichroism and fluorescence spectroscopy, and isothermal titration calorimetry to characterize the binding of Hoechst 33258 to the d(CGCGAATTCGCG)(2) oligomeric duplex at 25 degrees C. We used this experimental combination to determine the full thermodynamic profile for the binding of Hoechst 33258 to the DNA. Specifically, we report changes in binding free energy, enthalpy, entropy, volume, and adiabatic compressibility accompanying the binding. We interpret our volumetric data in terms of hydration and evaluate the number of waters of hydration that become released to or taken up from the bulk. Our calorimetric data reveal that the drug-DNA binding event studied in this work is entropy-driven and proceeds with an unfavorable change in enthalpy. The favorable binding entropy predominantly results from hydration changes. In contrast to a large and positive change in hydrational entropy, the binding-induced change in configurational entropy is insignificant. The latter observation is consistent with the "lock-and-key" mode of minor groove binding.  相似文献   

11.
Many cellular functions are based on the interaction and crosstalk of various signaling proteins. Among these, members of the Ras family of small GTP-binding proteins are important for communicating signals into different pathways. In order to answer the question of how binding affinity and specificity is achieved, we analyzed binding energetics on the molecular level, with reference to the available structural data. The interaction of two members of the Ras subfamily with two different effector proteins, namely Raf and RalGDS, were investigated using isothermal titration calorimetry and a fluorescence-based method. Experiments with alanine mutants, located in the complex interfaces, yielded an energy map for the contact areas of the Ras/effector complexes, which could be differentiated into enthalpy and entropy contributions. In addition, by using double mutant cycle analysis, we probed the energetic contribution of selected pairs of amino acid residues. The resulting energy landscapes of the Ras/effector interface areas show a highly different topology when comparing the two effectors, Raf and RalGDS, demonstrating the specificity of the respective interactions. Particularly, we observe a high degree of compensating effects between enthalpy and entropy; differences between these components are much greater than the overall free energy differences. This is observed also when using the software FOLD-X to predict the effect of point mutations on the crystal structures of the different complexes. Prediction of the free energy changes shows a very good correlation with the experimentally observed energies. Furthermore, in line with experimental data, energy decomposition indicates that many different components of large magnitude counteract each other to produce a smaller change in overall free energy, illustrating the importance of long-range electrostatic forces in complex formation.  相似文献   

12.
Croy JE  Fast JL  Grimm NE  Wuttke DS 《Biochemistry》2008,47(15):4345-4358
Linear chromosomes terminate in specialized nucleoprotein structures called telomeres, which are required for genomic stability and cellular proliferation. Telomeres end in an unusual 3' single-strand overhang that requires a special capping mechanism to prevent inappropriate recognition by the DNA damage machinery. In Schizosaccharomyces pombe, this protective function is mediated by the Pot1 protein, which binds specifically and with high affinity to telomeric ssDNA. We have characterized the thermodynamics and accommodation of both cognate and noncognate telomeric single-stranded DNA (ssDNA) sequences by Pot1pN, an autonomous ssDNA-binding domain (residues 1-187) found in full-length S. pombe Pot1. Direct calorimetric measurements of cognate telomeric ssDNA binding to Pot1pN show favorable enthalpy, unfavorable entropy, and a negative heat-capacity change. Thermodynamic analysis of the binding of noncognate telomeric ssDNA to Pot1pN resulted in unexpected changes in free energy, enthalpy, and entropy. Chemical-shift perturbation and structural analysis of these bound noncognate sequences show that these thermodynamic changes result from the structural rearrangement of both Pot1pN and the bound oligonucleotide. These data suggest that the ssDNA-binding interface is highly dynamic and, in addition to the conformation observed in the crystal structure of the Pot1pN/d(GGTTAC) complex, capable of adopting alternative thermodynamically equivalent conformations.  相似文献   

13.
We report the effects of peptide binding on the (15)N relaxation rates and chemical shifts of the C-SH3 of Sem-5. (15)N spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)), and ((1)H)-(15)N NOE were obtained from heteronuclear 2D NMR experiments. These parameters were then analyzed using the Lipari-Szabo model free formalism to obtain parameters that describe the internal motions of the protein. High-order parameters (S(2) > 0.8) are found in elements of regular secondary structure, whereas some residues in the loop regions show relatively low-order parameters, notably the RT loop. Peptide binding is characterized by a significant decrease in the (15)N relaxation in the RT loop. Concomitant with the change in dynamics is a cooperative change in chemical shifts. The agreement between the binding constants calculated from chemical shift differences and that obtained from ITC indicates that the binding of Sem-5 C-SH3 to its putative peptide ligand is coupled to a cooperative conformational change in which a portion of the binding site undergoes a significant reduction in conformational heterogeneity.  相似文献   

14.
The Tyr35-->Gly replacement in bovine pancreatic trypsin inhibitor (BPTI) has previously been shown to dramatically enhance the flexibility of the trypsin-binding region of the free inhibitor and to destabilize the interaction with the protease by about 3 kcal/mol. The effects of this replacement on the enzyme-inhibitor interaction were further studied here by X-ray crystallography and isothermal titration calorimetry (ITC). The co-crystal structure of Y35G BPTI bound to trypsin was determined using 1.65 A resolution X-ray diffraction data collected from cryopreserved crystals, and a new structure of the complex with wild-type BPTI under the same conditions was determined using 1.62 A data. These structures reveal that, in contrast to the free protein, Y35G BPTI adopts a conformation nearly identical with that of the wild-type protein, with a water-filled cavity in place of the missing Tyr side-chain. The crystallographic temperature factors for the two complexes indicate that the mutant inhibitor is nearly as rigid as the wild-type protein when bound to trypsin. Calorimetric measurements show that the change in enthalpy upon dissociation of the complex is 2.5 kcal/mol less favorable for the complex containing Y35G BPTI than for the complex with the wild-type inhibitor. Thus, the destabilization of the complex resulting from the Y35G replacement is due to a more favorable change in entropy upon dissociation. The heat capacity changes for dissociation of the mutant and wild-type complexes were very similar, suggesting that the entropic effects probably do not arise from solvation effects, but are more likely due to an increase in protein conformational entropy upon dissociation of the mutant inhibitor. These results define the biophysical role of a highly conserved core residue located outside of a protein-binding interface, demonstrating that Tyr35 has little impact on the trypsin-bound BPTI structure and acts primarily to define the structure of the free protein so as to maximize binding affinity.  相似文献   

15.
The N-terminal src-homology 2 domain of the p85 alpha subunit of phosphatidylinositol 3' kinase (SH2-N) binds specifically to phosphotyrosine-containing sequences. Notably, it recognizes phosphorylated Tyr 751 within the kinase insert of the cytoplasmic domain of the activated beta PDGF receptor. A titration of a synthetic 12-residue phosphopeptide (ESVDY*VPMLDMK) into a solution of the SH2-N domain was monitored using heteronuclear 2D and 3D NMR spectroscopy. 2D-(15N-1H) heteronuclear single-quantum correlation (HSQC) experiments were performed at each point of the titration to follow changes in both 15N and 1H chemical shifts in NH groups. When mapped onto the solution structure of the SH2-N domain, these changes indicate a peptide-binding surface on the protein. Line shape analysis of 1D profiles of individual (15N-1H)-HSQC peaks at each point of the titration suggests a kinetic exchange model involving at least 2 steps. To characterize changes in the internal dynamics of the domain, the magnitude of the (15N-1H) heteronuclear NOE for the backbone amide of each residue was determined for the SH2-N domain with and without bound peptide. These data indicate that, on a nanosecond timescale, there is no significant change in the mobility of either loops or regions of secondary structure. A mode of peptide binding that involves little conformational change except in the residues directly involved in the 2 binding pockets of the p85 alpha SH2-N domain is suggested by this study.  相似文献   

16.
In Part 2 of this series of DFT optimization studies of α-maltotetraose, we present results at the B3LYP/6-311++G∗∗ level of theory for conformations denoted ‘band-flips’ and ‘kinks’. Recent experimental X-ray studies have found examples of amylose fragments with conformations distorted from the usual syn forms, and it was of interest to examine these novel structural motifs by the same high-level DFT methods used in Part 1. As in Part 1, we have examined numerous hydroxymethyl rotamers (gg, gt, and tg) at different locations in the residue sequence, and include the two hydroxyl rotamers, the clockwise ‘c’ and counterclockwise ‘r’ forms. A total of fifty conformations were calculated and energy differences were found to attempt to identify those sources of electronic energy that dictate stressed amylose conformations. Most stressed conformations were found to have relative energies considerably greater (i.e., ∼4 to 12 kcal/mol) than the lowest energy syn forms. Relative energy differences between ‘c’ and ‘r’ forms are somewhat mixed with some stressed conformations being ‘c’ favored and some ‘r’ favored, with the lowest energy ‘kink’ form being an all-gg-r conformation with the ‘kink’ in the bc glycosidic dihedral angles. Comparison of our calculated structures with experimental results shows very close correspondence in dihedral angles.  相似文献   

17.
An unusual feature of the cocaine-binding aptamer is that it binds quinine much tighter than the ligand it was selected for, cocaine. Here we expand the repertoire of ligands that this aptamer binds to include the quinine-based antimalarial compounds amodiaquine, mefloquine, chloroquine and primaquine. Using isothermal titration calorimetry (ITC) we show that amodiaquine is bound by the cocaine-binding aptamer with an affinity of (7?±?4) nM, one of the tightest aptamer-small molecule affinities currently known. Amodiaquine, mefloquine and chloroquine binding are driven by both a favorable entropy and enthalpy of binding, while primaquine, quinine and cocaine binding are enthalpy driven with unfavorable binding entropy. Using nuclear magnetic resonance (NMR) and ITC methods we show that these ligands compete for the same binding sites in the aptamer. Our identification of such a tight binding ligand for this aptamer should prove useful in developing new biosensor techniques and applications using the cocaine-binding aptamer as a model system.  相似文献   

18.
The contribution of interactions involving the imidazole ring of His41 to the pH-dependent stability of the villin headpiece (HP67) N-terminal subdomain has been investigated by nuclear magnetic resonance (NMR) spin relaxation. NMR-derived backbone N-H order parameters (S2) for wild-type (WT) HP67 and H41Y HP67 indicate that reduced conformational flexibility of the N-terminal subdomain in WT HP67 is due to intramolecular interactions with the His41 imidazole ring. These interactions, together with desolvation effects, contribute to significantly depress the pKa of the buried imidazole ring in the native state. 15N R1rho relaxation dispersion data indicate that WT HP67 populates a partially folded intermediate state that is 10.9 kJ mol(-1) higher in free energy than the native state under non-denaturing conditions at neutral pH. The partially folded intermediate is characterized as having an unfolded N-terminal subdomain while the C-terminal subdomain retains a native-like fold. Although the majority of the residues in the N-terminal subdomain sample a random-coil distribution of conformations, deviations of backbone amide 1H and 15N chemical shifts from canonical random-coil values for residues within 5A of the His41 imidazole ring indicate that a significant degree of residual structure is maintained in the partially folded ensemble. The pH-dependence of exchange broadening is consistent with a linear three-state exchange model whereby unfolding of the N-terminal subdomain is coupled to titration of His41 in the partially folded intermediate with a pKa,I=5.69+/-0.07. Although maintenance of residual interactions with the imidazole ring in the unfolded N-terminal subdomain appears to reduce pKa,I compared to model histidine compounds, protonation of His41 disrupts these interactions and reduces the difference in free energy between the native state and partially folded intermediate under acidic conditions. In addition, chemical shift changes for residues Lys70-Phe76 in the C-terminal subdomain suggest that the HP67 actin binding site is disrupted upon unfolding of the N-terminal subdomain, providing a potential mechanism for regulating the villin-dependent bundling of actin filaments.  相似文献   

19.
Amide hydrogen-deuterium exchange has proven to be a powerful tool for detecting and characterizing high-energy conformations in protein ensembles. Since interactions with ligands can modulate these high-energy conformations, hydrogen exchange appears to be an ideal experimental probe of the physical mechanisms underlying processes like allosteric regulation. The chemical mechanism of hydrogen exchange, however, can complicate such studies. Here, we examine hydrogen exchange rates in a simple model system, the c-Src SH3 domain interacting with a short peptide ligand. Addition of ligand slows the rates of hydrogen exchange at nearly every amide for which we can obtain data. Careful analysis, however, reveals that this slowing is due primarily to a reduction in the population of free protein in the system, and not to any specific property of the complex. We present a method to separate the contributions of free and bound protein to the exchange kinetics that has allowed us to identify the subset of amides where exchange arises directly from the complex. These results demonstrate that the slowing of hydrogen exchange induced by ligand interactions should be interpreted with caution, and more extensive experiments are required to correlate changes in hydrogen exchange with changes in structure or internal dynamics.  相似文献   

20.
For the binding of peptides to wild-type HIV-1 and BIV TAR RNA and to mutants with bulges of various sizes, changes in the DeltaDelta G values of binding were determined from experimental K d values. The corresponding entropies of these bulges are estimated by enumerating all possible RNA bulge conformations on a lattice and then applying the Boltzmann relationship. Independent calculations of entropies from fluctuations are also carried out using the Gaussian network model (GNM) recently introduced for analyzing folded structures. Strong correlations are seen between the changes in free energy determined for binding and the two different unbound entropy calculations. The fact that the calculated entropy increase with larger bulge size is correlated with the enhanced experimental binding free energy is unusual. This system exhibits a dependence on the entropy of the unbound form that is opposite to usual binding models. Instead of a large initial entropy being unfavorable since it would be reduced upon binding, here the larger entropies actually favor binding. Several interpretations are possible: (i) the higher conformational freedom implies a higher competence for binding with a minimal strain, by suitable selection amongst the set of already accessible conformations; (ii) larger bulge entropies enhance the probability of the specific favorable conformation of the bound state; (iii) the increased freedom of the larger bulges contri-butes more to the bound state than to the unbound state; (iv) indirectly the large entropy of the bound state might have an unfavorable effect on the solvent structure. Nonetheless, this unusual effect is interesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号