首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The gelatinases are a subgroup of the matrix metalloproteinase family. The interaction of their C-terminal hemopexin-like domain with a tissue inhibitor of metalloproteinases (TIMP) is a major part of the regulatory mechanisms of gelatinases. To investigate the interaction of the hemopexin-like domain of gelatinase B (92-Pex) and TIMP-1, we expressed the individual domain in Pichia pastoris. The active refolded domain was purified by ion exchange chromatography and gel filtration. We investigated the formation of the 92-Pex/TIMP-1 complex by surface plasmon resonance (SPR). The dissociation constant Kd was calculated to be 0.86 nM. Analogous to the complex of the hemopexin-like domain of gelatinase A and TIMP-2 (Olson, M. W. et al., 1997), the binding curves of the 92-Pex/TIMP-1 complex were best fitted with a monophasic model.  相似文献   

2.
ATP binding and hydrolysis are critical for protein degradation by HslUV, a AAA + machine containing one or two HslU6 ATPases and the HslV12 peptidase. Although each HslU homohexamer has six potential ATP-binding sites, we show that only three or four ATP molecules bind at saturation and present evidence for three functional subunit classes. These results imply that only a subset of HslU and HslUV crystal structures represents functional enzyme conformations. Our results support an asymmetric mechanism of ATP binding and hydrolysis, and suggest that molecular contacts between HslU and HslV vary dynamically throughout the ATPase cycle. Nucleotide binding controls HslUV assembly and activity. Binding of a single ATP allows HslU to bind HslV, whereas additional ATPs must bind HslU to support substrate recognition and to activate ATP hydrolysis, which powers substrate unfolding and translocation. Thus, a simple thermodynamic hierarchy ensures that substrates bind to functional HslUV complexes, that ATP hydrolysis is efficiently coupled to protein degradation, and that working HslUV does not dissociate, allowing highly processive degradation.  相似文献   

3.
Diagnosis of eukaryotic parasitic infection using antibody-based tests such as ELISAs (enzyme-linked immunosorbent assays) is often problematic because of the need to differentiate between homologous host and pathogen proteins and to ensure that antibodies raised against a peptide will also bind to the peptide in the context of its three-dimensional protein structure. Filariasis caused by the nematode, Brugia malayi, is an important worldwide tropical disease in which parasites disappear from the bloodstream during daylight hours, thus hampering standard microscopic diagnostic methods. To address this problem, a structural approach was used to develop monoclonal antibodies (mAbs) that detect asparaginyl-tRNA synthetase (AsnRS) secreted from B. malayi. B. malayi and human AsnRS amino acid sequences were aligned to identify regions that are relatively unconserved, and a 1.9 A crystallographic structure of B. malayi AsnRS was used to identify peptidyl regions that are surface accessible and available for antibody binding. Sequery and SSA (Superpositional Structural Analysis) software was used to analyze which of these peptides was most likely to maintain its native conformation as a synthetic peptide, and its predicted helical structure was confirmed by NMR. A 22-residue peptide was synthesized to produce murine mAbs. Four IgG(1) mAbs were identified that recognized the synthetic peptide and the full-length parasite AsnRS, but not human AsnRS. The specificity and affinity of mAbs was confirmed by Western blot, immunohistochemistry, surface plasmon resonance, and enzyme inhibition assays. These results support the success of structural modeling to choose peptides for raising selective antibodies that bind to the native protein.  相似文献   

4.
Matrix metalloproteinases (MMPs) are a large family of extracellular or membrane-bound proteases. Their ability to cleave extracellular matrix (ECM) proteins has implicated a role in ECM remodeling to affect cell fate and behavior during development and in pathogenesis. We have shown previously that membrane-type 1 (MT1)-MMP [corrected] is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine and tail where GelA is expressed during Xenopus laevis metamorphosis, suggesting a cooperative role of these MMPs in development. Here, we show that Xenopus GelA and MT1-MMP interact with each other in vivo and that overexpression of MT1-MMP and GelA together in Xenopus embryos leads to the activation of pro-GelA. We further show that both MMPs are expressed during Xenopus embryogenesis, although MT1-MMP gene is expressed earlier than the GelA gene. To investigate whether the embryonic MMPs play a role in development, we have studied whether precocious expression of these MMPs alters development. Our results show that overexpression of both MMPs causes developmental abnormalities and embryonic death by a mechanism that requires the catalytic activity of the MMPs. More importantly, we show that coexpression of wild type MT1-MMP and GelA leads to a cooperative effect on embryonic development and that this cooperative effect is abolished when the catalytic activity of either MMP is eliminated through a point mutation in the catalytic domain. Thus, our studies support a cooperative role of these MMPs in embryonic development, likely through the activation of pro-GelA by MT1-MMP.  相似文献   

5.
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 Å resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 Å). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.  相似文献   

6.
The cytosolic protein CERT transfers ceramide from the endoplasmic reticulum to the Golgi apparatus where ceramide is converted to SM. The C-terminal START (steroidogenic acute regulatory protein-related lipid transfer) domain of CERT binds one ceramide molecule in its central amphiphilic cavity. (1R,3R)-N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamide (HPA), a synthesized analogue of ceramide, inhibits ceramide transfer by CERT. Here we report crystal structures of the CERT START domain in complex with HPAs of varying acyl chain lengths. In these structures, one HPA molecule is buried in the amphiphilic cavity where the amide and hydroxyl groups of HPA form a hydrogen-bond network with specific amino acid residues. The Ω1 loop, which has been suggested to function as a gate of the cavity, adopts a different conformation when bound to HPA than when bound to ceramide. In the Ω1 loop region, Trp473 shows the largest difference between these two structures. This residue exists inside of the cavity in HPA-bound structures, while it is exposed to the outside of the protein in the apo-form and ceramide-bound complex structures. Surface plasmon resonance experiments confirmed that Trp473 is important for interaction with membranes. These results provide insights into not only the molecular mechanism of inhibition by HPAs but also possible mechanisms by which CERT interacts with ceramide.  相似文献   

7.
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5′-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t1/2  ∼ 2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5′-triphosphate nor a 5′-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor.  相似文献   

8.
Discoidin domain receptor 1 (DDR1) is a widely expressed tyrosine kinase receptor which binds to and gets activated by collagens including collagen type 1. Little is understood about the interaction of DDR1 with collagen and its possible functional implications. Here, we elucidate the binding pattern of the DDR1 extracellular domain (ECD) to collagen type 1 and its impact on collagen fibrillogenesis. Our in vitro assays utilized DDR1-Fc fusion proteins, which contain only the ECD of DDR1. Using surface plasmon resonance, we confirmed that further oligomerization of DDR1-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Single-molecule imaging by means of atomic force microscopy revealed that DDR1 oligomers bound at overlapping or adjacent collagen molecules and were nearly absent on isolated collagen molecules. Interaction of DDR1 oligomers with collagen was found to modulate collagen fibrillogenesis both in vitro and in cell-based assays. Collagen fibers formed in the presence of DDR1 had a larger average diameter, were more cross-linked and lacked the native banded structure. The presence of DDR1 ECD resulted in "locking" of collagen molecules in an incomplete fibrillar state both in vitro and on surfaces of cells overexpressing DDR1. Our results signify an important functional role of the DDR1 ECD, which occurs naturally in kinase-dead isoforms of DDR1 and as a shedded soluble protein. The modulation of collagen fibrillogenesis by the DDR1 ECD elucidates a novel mechanism of collagen regulation by DDR1.  相似文献   

9.
10.
Chloroplasts of higher plants contain a unique signal recognition particle (cpSRP) that consists of two proteins, cpSRP54 and cpSRP43. CpSRP43 is composed of a four ankyrin repeat domain and three functionally distinct chromodomains (CDs). In this report we confirm previously published data that the second chromodomain (CD2) provides the primary binding site for cpSRP54. However, quantitative binding analysis demonstrates that cpSRP54 binds to CD2 significantly less efficiently than it binds to full-length cpSRP43. Further analysis of the binding interface of cpSRP by mutagenesis studies and a pepscan approach demonstrates that the C-terminal alpha-helix of CD2 facilitates binding to cpSRP54.  相似文献   

11.
Bacillus anthracis, the causative agent of anthrax is one of the most important biological warfare agents. In this study, surface plasmon resonance (SPR) technology was used for indirect detection of B. anthracis by detecting protective antigen (PA), a common toxin produced by all live B. anthracis bacteria. For development of biosensor, a monoclonal antibody raised against B. anthracis PA was immobilized on carboxymethyldextran modified gold chip and its interaction with PA was characterized in situ by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74, respectively. The change in Gibb’s free energy (∆G = −78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 12 fM purified PA. When anthrax spores spiked soil samples were enriched, PA produced in the sample containing even a single spore of B. anthracis could be detected by SPR. PA being produced only by the vegetative cells of B. anthracis, confirms indirectly the presence of B. anthracis in the samples. The proposed method can be a very useful tool for screening and confirmation of anthrax suspected environmental samples during a bio-warfare like situation.  相似文献   

12.
Collagens contain a unique triple-helical structure with a repeating sequence -G-X-Y-, where proline and hydroxyproline are major constituents in X and Y positions, respectively. Folding of the collagen triple helix requires trimerization domains. Once trimerized, collagen chains are correctly aligned and the folding of the triple helix proceeds in a zipper-like fashion. Here we report the isolation, characterization, and crystal structure of the trimerization domain of human type XVIII collagen, a member of the multiplexin family. This domain differs from all other known trimerization domains in other collagens and exhibits a high trimerization potential at picomolar concentrations. Strong chain association and high specificity of binding are needed for multiplexins, which are present at very low levels.  相似文献   

13.
14.
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.  相似文献   

15.
Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly 2 orders of magnitude higher than that of 17-28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp, and Leu dominate PMI or 17-28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17-28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17-28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual-specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25-109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized intermolecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions.  相似文献   

16.
The properties of vesicle membranes prepared from 16:0-SM, 16:0-DHSM, or DPPC were characterized using steady-state and time-resolved fluorescence spectroscopy and different fluorescent reporter molecules. The acyl-chain region was probed using free and phospholipid-bound 1,6-diphenyl-1,3,5-hexatriene. 16:0-DHSM was found to be the more ordered than both DPPC and 16:0-SM 5°C below and above melting temperature. Interfacial properties of the phospholipid bilayers were examined using 6-dodecanoyl-2-dimethyl-aminonaphthalene (Laurdan), 6-propionyl-2-dimethyl-amino-naphthalene (Prodan), and dansyl-PE. Laurdan and Prodan reported that the two sphingomyelin (SM) membrane interfaces were clearly different from the DPPC membrane interface, whereas the two SM membrane interfaces had more similar properties (both in gel and liquid-crystalline phase). Prodan partition studies showed that membrane resistance to Prodan partitioning increased in the order: 16:0-SM < DPPC < 16:0-DHSM. The degree to which dansyl-PE is exposed to water reflects the structural properties of the membrane-water interface. By comparing the lifetime of dansyl-PE in water and deuterium oxide solution, we could show that the degree to which the dansyl moiety was exposed to water in the membranes increased in the order: 16:0-SM < DPPC < 16:0-DHSM. In conclusion, this study has shown that DHSM forms more ordered bilayers than acyl-chain matched SM or phosphatidylcholine, even in the liquid-crystalline state.  相似文献   

17.
With the increasing number and variations of genome sequences available, control of gene expression with synthetic, cell-permeable molecules is within reach. The variety of sequence-specific binding agents is, however, still quite limited. Many minor groove binding agents selectivity recognize AT over GC sequences but have less ability to distinguish among different AT sequences. The goal with this article is to develop compounds that can bind selectively to different AT sequences. A number of studies indicate that AATT and TTAA sequences have significantly different physical and interaction properties and different requirements for minor groove recognition. Although it has been difficult to get minor groove binding at TTAA, DB293, a phenyl-furan-benzimidazole diamidine, was found to bind as a strong, cooperative dimer at TTAA but with no selectivity over AATT. In order to improve selectivity, we made modifications to each unit of DB293. Binding affinities and stoichiometries obtained from biosensor-surface plasmon resonance experiments show that DB1003, a furan-furan-benzimidazole diamidine, binds strongly to TTAA as a dimer and has selectivity (KTTAA/KAATT = 6). CD and DNase I footprinting studies confirmed the preference of this compound for TTAA. In summary, (i) a favorable stacking surface provided by the pi system, (ii) H-bond donors to interact with TA base pairs at the floor of the groove provided by a benzimidazole (or indole) -NH and amidines, and (iii) appropriate curvature of the dimer complex to match the curvature of the minor groove play important roles in differentiating the TTAA and AATT minor grooves.  相似文献   

18.
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.  相似文献   

19.
The osteoclast variant of the vacuolar H+-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC50 in the 10-nanomolar range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号