首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the channel was evaluated. Counterintuitively, cell damage increased with decreasing opening velocity. The presence of pulmonary surfactant, Infasurf, completely abated the injury. These results support the hypotheses that mechanical stresses associated with airway reopening injure pulmonary epithelial cells and that pulmonary surfactant protects the epithelium from this injury. Computational simulations identified the magnitudes of components of the stress cycle associated with airway reopening (shear stress, pressure, shear stress gradient, or pressure gradient) that may be injurious to the epithelial cells. By comparing these magnitudes to the observed damage, we conclude that the steep pressure gradient near the bubble front was the most likely cause of the observed cellular damage.  相似文献   

2.
3.
We consider a simple physical model for the reopening of a collapsed lung airway involving the unsteady propagation of a long bubble of air, driven at a prescribed flow-rate, into a liquid-filled channel formed by two flexible membranes that are held under large longitudinal tension and are confined between two parallel rigid plates. This system is described theoretically using an asymptotic approximation, valid for uniformly small membrane slopes, which reduces to a fourth-order nonlinear evolution equation for the channel width ahead of the bubble tip, from which the time-evolution of the bubble pressure pb* and bubble speed may be determined. The model shows that there can be a substantial delay between the time at which the bubble starts to grow in volume and the time at which its tip starts to move. Under certain conditions, the start of the bubble's motion is accompanied by a transient overshoot in pb*, as seen previously in experiment; the model predicts that the overshoot is greatest in narrow channels when the bubble is driven with a large volume flux. It is also shown how the threshold pressure for steady bubble propagation in wide channels has distinct contributions from the capillary pressure drop across the bubble tip and viscous dissipation in the channel ahead of the bubble.  相似文献   

4.
The reduction of tidal volume during mechanical ventilation has been shown to reduce mortality of patients with acute respiratory distress syndrome, but epithelial cell injury can still result from mechanical stresses imposed by the opening of occluded airways. To study these stresses, a fluid-filled parallel-plate flow chamber lined with epithelial cells was used as an idealized model of an occluded airway. Airway reopening was modeled by the progression of a semi-infinite bubble of air through the length of the channel, which cleared the fluid. In our laboratory's prior study, the magnitude of the pressure gradient near the bubble tip was directly correlated to the epithelial cell layer damage (Bilek AM, Dee KC, and Gaver DP III. J Appl Physiol 94: 770-783, 2003). However, in that study, it was not possible to discriminate the stress magnitude from the stimulus duration because the bubble propagation velocity varied between experiments. In the present study, the stress magnitude is modified by varying the viscosity of the occlusion fluid while fixing the reopening velocity across experiments. This approach causes the stimulus duration to be inversely related to the magnitude of the pressure gradient. Nevertheless, cell damage remains directly correlated with the pressure gradient, not the duration of stress exposure. The present study thus provides additional evidence that the magnitude of the pressure gradient induces cellular damage in this model of airway reopening. We explore the mechanism for acute damage and also demonstrate that repeated reopening and closure is shown to damage the epithelial cell layer, even under conditions that would not lead to extensive damage from a single reopening event.  相似文献   

5.
Inhomogeneously compliant lungs need special treatment during ventilation as they are often affected by respiratory insufficiency which is frequently caused by a regional collapse of the airways. To treat respiratory insufficiency atelectatic areas have to be recruited. Beside conventional mechanical ventilation, high-frequency oscillatory ventilation (HFOV) is an efficient method for airway reopening. Using a transparent in-vitro model of the human lung the influence of varying frequencies on the reopening behavior of atelectatic regions is investigated for volume controlled ventilation. The experiments show that higher ventilation frequencies at constant tidal volume enhance the probability of successful reopening of collapsed lung regions and thus, lead to a more homogeneous distribution of air within the lung. This effect can be attributed (i) to larger flow velocities and thus larger pressure losses in the free pathways as the ventilation frequency increases and (ii) to higher inertia effects. In consequence, the static pressure in the branches above the atelectatic regions increases until it reaches a level at which recruitment is achieved.  相似文献   

6.
The CFBE41o- cell line was generated by transformation of cystic fibrosis (CF) tracheo-bronchial cells with SV40 and has been reported to be homozygous for the DeltaF508 mutation. A systematic characterisation of these cells, which however, is a pre-requisite for their use as an in vitro model, has not been undertaken so far. Here, we report an assessment of optimal culture conditions, the expression pattern of drug-transport-related proteins and the stability/presence of the CF transmembrane conductance regulator (CFTR) mutation in the gene and gene product over multiple passages. The CFBE41o- cell line was also compared with a wild-type airway epithelial cell line, 16HBE14o-, which served as model for bronchial epithelial cells in situ. The CFBE41o- cell line retains at least some aspects of human CF bronchial epithelial cells, such as the ability to form electrically tight cell layers with functional cell-cell contacts, when grown under immersed (but not air-interfaced) culture conditions. The cell line is homozygous for DeltaF508-CFTR over multiple passages in culture and expresses a number of proteins relevant for pulmonary drug absorption (e.g. P-gp, LRP and caveolin-1). Hence, the CFBE41o- cell line should be useful for studies of CF gene transfer or alternative treatment with small drug molecules and for the gathering of further information about the disease at the cellular level, without the need for primary culture.  相似文献   

7.
An epithelial cell is modeled as a single compartment, bounded by apical and basolateral cell membranes, and containing two nonelectrolyte solute species, nominally NaCl and KCl. Membrane transport of these species may be metabolically driven, or it may follow the transmembrane concentration gradients, either singly (a channel) or jointly (a cotransporter). To represent the effect of stretch-activated channels or shrinkage-activated cotransporters, the membrane permeabilities and cotransport coefficients are permitted to be functions of cell volume. When this epithelium is considered as a dynamical system, conditions are indicated which guarantee the uniqueness and stability of equilibria. Experimentally, many epithelial cells can regulate their volume, and such volume regulatory capability is defined for this model. It is clearly distinct from dynamical stability of the equilibrium and requires more stringent conditions on the volume-dependent permeabilities and cotransporters. For a previously developed model of the toad urinary bladder (Strieteret al., 1990,J. gen. Physiol. 96, 319–344) the uniqueness and stability of its equilibria are indicated. The analysis also demonstrates that under some conditions a second stable equilibrium may appear, along with a saddle-node bifurcation. This is illustrated numerically in a modified model of the epithelium of the thick ascending limb of Henle.  相似文献   

8.
A new mathematical model of ion movements in airway epithelia is presented, which allows predictions of ion fluxes, membrane potentials and ion concentrations. The model includes sodium and chloride channels in the apical membrane, a Na/K pump and a cotransport system for Cl- with stoichiometry Na+:K+:2Cl- in the basolateral membrane. Potassium channels in the basolateral membrane are used to regulate cell volume. Membrane potentials, ion fluxes and intracellular ion concentration are calculated as functions of apical ion permeabilities, the maximum pump current and the cotransport parameters. The major predictions of the model are: (1) Cl- concentration in the cell is determined entirely by the intracellular concentration of negatively charged impermeable ions and the osmotic conditions; (2) changes in intracellular Na+ and K+ concentrations are inversely related; (3) cotransport provides the major driving force for Cl- flux, increases intracellular Na+ concentration, decreases intracellular K+ concentration and hyperpolarizes the cell interior; (4) the maximum rate of the Na/K pump, by contrast, has little effect on Na+ or Cl- transepithelial fluxes and a much less pronounced effect on cell membrane polarization; (5) an increase in apical Na+ permeability causes an increase in intracellular Na+ concentration and a significant increase in Na+ flux; (6) an increase in apical Cl- permeability decreases intracellular Na+ concentration and Na+ flux; (7) assuming Na+ and Cl- permeabilities equal to those measured in human nasal epithelia, the model predicts that under short circuit conditions, Na+ absorption is much higher than Cl- secretion, in agreement with experimental measurements.  相似文献   

9.
Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (approximately 0.5-1.3 mm2) were created in cultured 1HAEo- human airway epithelial cell monolayers, after which cells were treated with up to 10 microM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 microM dexamethasone was 43+/-18% vs. 10+/-8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 microM budesonide was 39+/-4% vs. 43+/-3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo-.Bcl-2+ cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.  相似文献   

10.
Agricultural work and other occupational exposures are responsible for approximately 15% of chronic obstructive pulmonary disease (COPD). COPD involves airway remodeling in response to chronic lung inflammatory events and altered airway repair mechanisms. However, the effect of agricultural dust exposure on signaling pathways that regulate airway injury and repair has not been well characterized. A key step in this process is migration of airway cells to restore epithelial integrity. We have previously shown that agents that activate the critical regulatory enzyme protein kinase C (PKC) slow cell migration during wound repair. Based on this observation and direct kinase measurements that demonstrate that dust extract from hog confinement barns (HDE) specifically activates the PKC isoforms PKCalpha and PKCepsilon, we hypothesized that HDE would slow wound closure time in airway epithelial cells. We utilized the human bronchial epithelial cell line BEAS-2B and transfected BEAS-2B cell lines that express dominant negative (DN) forms of PKC isoforms to demonstrate that HDE slows wound closure in BEAS-2B and PKCepsilon DN cell lines. However, in PKCalpha DN cells, wound closure following HDE treatment is not significantly different than media-treated cells. These results suggest that the PKCalpha isoform is an important regulator of cell migration in response to agricultural dust exposure.  相似文献   

11.
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (~250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ~70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.  相似文献   

12.
Accessory cell function of airway epithelial cells. We previously demonstrated that airway epithelial cells (AECs) have many features of accessory cells, including expression of class II molecules CD80 and CD86 and functional Fcgamma receptors. We have extended these studies to show that freshly isolated AECs have mRNA for cathepsins S, V, and H [proteases important in antigen (Ag) presentation], invariant chain, human leukocyte antigen (HLA)-DM-alpha and HLA-DM-beta, and CLIP, an invariant chain breakdown product. A physiologically relevant Ag, ragweed, was colocalized with HLA-DR in AECs, and its uptake was increased by granulocyte-macrophage colony-stimulating factor and IFN-gamma treatments, which had no effect on CD80 and CD86 expression. We demonstrate the presence of other costimulatory molecules, including B7h and B7-H1, on AECs and the increased expression of B7-H1 on AECs after treatment with granulocyte-macrophage colony-stimulating factor and IFN-gamma. Finally, we compared T cell proliferation after allostimulation with AECs and dendritic cells (DCs). The precursor frequency of peripheral blood T cells responding to AECs was 0.264% compared with 0.55% for DCs. DCs stimulated CD45RO(+), CD45RA(+), CCR7(+) and CCR7(-)CD4(+), and CD8(+) T cells, whereas AECs stimulated only CD45RO(+), CD45RA(-), CCR7(-), CD4(+), and CD8(+) T cells. There was no difference in cytokine production, type of memory T cells stimulated (effector vs. long-term memory), or apoptosis by T cells cocultured with AECs and DCs. The localization of AECs exposed to the external environment may make them important in the regulation of local immune responses.  相似文献   

13.
BACKGROUND: Allergic asthma is associated with an increased number of eosinophils in the airway wall. Eosinophils secrete cationic proteins, particularly major basic protein (MBP). AIM: To investigate the effect of synthetic cationic polypeptides such as poly-L-arginine, which can mimic the effect of MBP, on airway epithelial cells. METHODS: Cultured airway epithelial cells were exposed to poly-L-arginine, and effects were determined by light and electron microscopy. RESULTS: Poly-L-arginine induced apoptosis and necrosis. Transmission electron microscopy showed mitochondrial damage and changes in the nucleus. The tight junctions were damaged, as evidenced by penetration of lanthanum. Scanning electron microscopy showed a damaged cell membrane with many pores. Microanalysis showed a significant decrease in the cellular content of magnesium, phosphorus, sodium, potassium and chlorine, and an increase in calcium. Plakoglobin immunoreactivity in the cell membrane was decreased, indicating a decrease in the number of desmosomes CONCLUSIONS: The results point to poly-L-arginine induced membrane damage, resulting in increased permeability, loss of cell-cell contacts and generalized cell damage.  相似文献   

14.
The contribution of acidosis to the development of reperfusion injury is controversial. In this study, we examined the effects of respiratory acidosis and hypoxia in a frequently used in vivo liver ischemia and reperfusion (I/R) injury rat model. Rats were anesthetized with intraperitoneal anesthetics and subjected to partial liver ischemia (70%) for 60 min and subsequent reperfusion for 90 min under the following conditions: 1) no acidosis and normoxia, maintained by controlled ventilation; 2) acidosis and normoxia, maintained by passive supply with oxygen; 3) no acidosis and hypoxia, maintained by bicarbonate administration without respiratory support; and 4) acidosis and hypoxia, i.e., without respiratory support or pH correction. Changes in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured as parameters of hepatocellular injury, and bile secretion was monitored. AST and ALT levels were lowest in the ventilated rats and highest in the bicarbonate-treated rats. No differences in bile secretion were found between groups. Our results suggest that respiratory acidosis significantly enhanced liver I/R injury under normoxic conditions, whereas respiratory acidosis significantly reduced liver I/R injury under hypoxic conditions.  相似文献   

15.
16.
Nitric oxide (NO*) is a gaseous mediator synthesized by nitric oxide synthases. NO* is involved in the modulation of inflammation, but its role in airway inflammation remains controversial. We investigated the role of NO* in the synthesis of the chemokines interleukin-8 and monocyte chemotactic protein-1, and of intercellular adhesion molecule-1 by human airway epithelial cells. normal human bronchial epithelial cells and the bronchial epithelial cell line BEAS-2B were used. interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion and intercellular adhesion molecule-1 (ICAM-1) expression were measured by ELISA. mRNA was assessed by semiquantitative RTI-PCR. Interleukin-8 secretion was significantly reduced after 24h incubation with the NO* donor, sodium nitroprusside. The effect was dose-dependent. Similar results were obtained with S-nitroso-N-D,L-penicillamine and S-nitroso-L-glutathione. Inhibition of endogenous NO* with the nitric oxide synthase inhibitor N-nitro-L-arginine-methyl-ester caused an increase in IL-8 secretion by lipopolysaccharide- and cytokine-stimulated BEAS-2B cells. Sodium nitroprusside also caused a reduction in monocyte chemotactic protein-1 secretion by both cell types. In contrast, intercellular adhesion molecule-1 expression was upregulated by sodium nitroprusside. RTI-PCR results indicate that the modulation of protein levels was paralleled by modification in mRNA levels. NO* has divergent effects on the synthesis of different inflammatory mediators in human bronchial epithelial cells.  相似文献   

17.
18.

Background

The cadmium (Cd) present in air pollutants and cigarette smoke has the potential of causing multiple adverse health outcomes involving damage to pulmonary and cardiovascular tissue. Injury to pulmonary epithelium may include alterations in tight junction (TJ) integrity, resulting in impaired epithelial barrier function and enhanced penetration of chemicals and biomolecules. Herein, we investigated mechanisms involved in the disruption of TJ integrity by Cd exposure using an in vitro human air-liquid-interface (ALI) airway tissue model derived from normal primary human bronchial epithelial cells.

Methods

ALI cultures were exposed to noncytotoxic doses of CdCl2 basolaterally and TJ integrity was measured by Trans-Epithelial Electrical Resistance (TEER) and immunofluorescence staining with TJ markers. PCR array analysis was used to identify genes involved with TJ collapse. To explore the involvement of kinase signaling pathways, cultures were treated with CdCl2 in the presence of kinase inhibitors specific for cellular Src or Protein Kinase C (PKC).

Results

Noncytotoxic doses of CdCl2 resulted in the collapse of barrier function, as demonstrated by TEER measurements and Zonula occludens-1 (ZO-1) and occludin staining. CdCl2 exposure altered the expression of several groups of genes encoding proteins involved in TJ homeostasis. In particular, down-regulation of select junction-interacting proteins suggested that a possible mechanism for Cd toxicity involves disruption of the peripheral junctional complexes implicated in connecting membrane-bound TJ components to the actin cytoskeleton. Inhibition of kinase signaling using inhibitors specific for cellular Src or PKC preserved the integrity of TJs, possibly by preventing occludin tyrosine hyperphosphorylation, rather than reversing the down-regulation of the junction-interacting proteins.

Conclusions

Our findings indicate that acute doses of Cd likely disrupt TJ integrity in human ALI airway cultures both through occludin hyperphosphorylation via kinase activation and by direct disruption of the junction-interacting complex.  相似文献   

19.
The ionic composition of the fluid lining the airways (airway surface liquid, ASL) in healthy subjects and patients with cystic fibrosis (CF) has been a matter of controversy. It has been attempted to resolve conflicting theories by using cell cultures, but published results show a wide variety of values for the ionic concentrations in the apical fluid in these cultures. To investigate CFTR-mediated HCO(3)(-) conductance and the role of HCO(3)(-) in regulating ASL pH we determined the pH of the fluid covering the apical surface of airway epithelial cells. A normal (16HBE14o (-)) and a CF (CFBE41o (-)) bronchial epithelial cell line were grown on membrane inserts in both a liquid-liquid interface culture system for 7 days, and in an air-liquid interface culture system for one month. The elemental composition of the fluid covering the apical surface was determined by X-ray microanalysis of frozen-hydrated specimens, or by X-ray microanalysis of Sephadex beads that had been equilibrated with the apical fluid. Analysis showed that the apical fluid had a Na(+) and Cl(-) concentration of about 80-100 mM and thus was slightly hypotonic. The ionic concentrations were somewhat higher in air-liquid interface than in liquid-liquid interface cultures. The apical fluid in CF cells had significantly higher concentrations of Na and Cl than that in control cultures. In control cultures, the concentrations of Na and Cl in the apical fluid increased if glibenclamide, an inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR) was added to the apical medium. Exposing the cells to the metabolic inhibitor NaCN also resulted in a significant increase of the Na and Cl concentrations in the apical fluid. The results agree with the notion that these cell cultures are mainly absorptive cells, and that ion absorption by the CF cells is reduced compared to that in normal cells. The pH measurements of the fluid covering the apical part of cell cultures support the notion that bicarbonate ions may be transported by CFTR, and that this can be inhibited by specific CFTR inhibitors.  相似文献   

20.
Recent studies have shown that mechanical forces on airway epithelial cells can induce upregulation of genes involved in airway remodeling in diseases such as asthma. However, the relevance of these responses to airway wall remodeling is still unclear since 1). mechanotransduction is highly dependent on environment (e.g., matrix and other cell types) and 2). inflammatory mediators, which strongly affect remodeling, are also present in asthma. To assess the effects of mechanical forces on the airway wall in a relevant three-dimensional inflammatory context, we have established a tissue culture model of the human airway wall that can be induced to undergo matrix remodeling. Our model contains differentiated human bronchial epithelial cells characterized by tight junctions, cilia formation, and mucus secretion atop a collagen gel embedded with human lung fibroblasts. We found that addition of activated eosinophils and the application of 50% strain to the same system increased the epithelial thickness compared with either condition alone, suggesting that mechanical strain affects airway wall remodeling synergistically with inflammation. This integrated model more closely mimics airway wall remodeling than single-cell, conditioned media, or even two-dimensional coculture systems and is relevant for examining the importance of mechanical strain on airway wall remodeling in an inflammatory environment, which may be crucial for understanding and treating pathologies such as asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号