首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glutathione (GSH; γ-glutamyl-cysteinyl-glycine) is a small intracellular thiol molecule which is considered as a strong non-enzymatic antioxidant. Glutathione regulates multiple metabolic functions; for example, it protects membranes by maintaining the reduced state of both α-tocopherol and zeaxanthin, it prevents the oxidative denaturation of proteins under stress conditions by protecting their thiol groups, and it serves as a substrate for both glutathione peroxidase and glutathione S-transferase. By acting as a precursor of phytochelatins, GSH helps in the chelating of toxic metals/metalloids which are then transported and sequestered in the vacuole. The glyoxalase pathway (consisting of glyoxalase I and glyoxalase II enzymes) for detoxification of methylglyoxal, a cytotoxic molecule, also requires GSH in the first reaction step. For these reasons, much attention has recently been directed to elucidation of the role of this molecule in conferring tolerance to abiotic stress. Recently, this molecule has drawn much attention because of its interaction with other signaling molecules and phytohormones. In this review, we have discussed the recent progress in GSH biosynthesis, metabolism and its role in abiotic stress tolerance.  相似文献   

3.
The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase   总被引:30,自引:0,他引:30  
Linolenic acid was converted to a cyclic product, 12-oxo-phytodienoic acid, by lipoxygenase and hydroperoxide cyclase enzymes present in Vicia faba pericarp. Isotope labeling studies in which [U-14C] 12-[180] oxo-phytodienoic acid was incubated with thin sections of pericarp tissue showed that 12-oxo-phytodienoic acid is a biosynthetic precursor to jasmonic acid, a plant growth regulator which promotes senescence. Key enzymes proposed for this pathway are a reductase enzyme which reduces a double bond in the cyclopentenone ring, and beta-oxidation enzymes which remove six carbons from the carboxyl end of the molecule.  相似文献   

4.
5.
Over a century ago workers such as J. Lubbock and K. von Frisch developed behavioural criteria for establishing that non‐human animals see colour. Many animals in most phyla have since then been shown to have colour vision. Colour is used for specific behaviours, such as phototaxis and object recognition, while other behaviours such as motion detection are colour blind. Having established the existence of colour vision, research focussed on the question of how many spectral types of photoreceptors are involved. Recently, data on photoreceptor spectral sensitivities have been combined with behavioural experiments and physiological models to study systematically the next logical question: ‘what neural interactions underlie colour vision ?‘This review gives an overview of the methods used to study animal colour vision, and discusses how quantitative modelling can suggest how photoreceptor signals are combined and compared to allow for the discrimination of biologically relevant stimuli.  相似文献   

6.
7.
8.
Cellulose biosynthesis: current views and evolving concepts   总被引:10,自引:0,他引:10  
* AIMS: To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. * SCOPE: Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. * CONCLUSIONS: With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back.  相似文献   

9.
10.
11.
12.
13.
14.
Klebsiella pneumoniae is known to produce 2,3-butanediol (2,3-BDO), a valuable chemical. In K. pneumoniae, the 2,3-BDO operon (budBAC) is involved in the production of 2,3-BDO. To observe the physiological role of the 2,3-BDO operon in a mixed acid fermentation, we constructed a budBAC-deleted strain (SGSB109). The production of extracellular metabolites, CO2 emission, carbon distribution, and NADH/NAD+ balance of SGSB109 were compared with the parent strain (SGSB100). When comparing the carbon distribution at 15 hr, four significant differences were observed: in 2,3-BDO biosynthesis, lactate and acetate production (lactate and acetate production increased 2.3-fold and 4.1-fold in SGSB109 compared to SGSB100), CO2 emission (higher in SGSB100), and carbon substrate uptake (higher in SGSB100). Previous studies on the inactivation of the 2,3-BDO operon were focused on the increase of 1,3-propanediol production. Few studies have been done observing the role of 2,3-BDO biosynthesis. This study provides a prime insight into the role of 2,3-BDO biosynthesis of K. pneumoniae.  相似文献   

15.
16.
17.
Phosphatidylcholine (PC), or lecithin, is the major phospholipid in eukaryotic membranes, whereas only 10% of all bacteria are predicted to synthesize PC. In Rhizobiaceae, including the phytopathogenic bacterium Agrobacterium tumefaciens, PC is essential for the establishment of a successful host-microbe interaction. A. tumefaciens produces PC via two alternative pathways, the methylation pathway and the Pcs pathway. The responsible genes, pmtA (coding for a phospholipid N-methyltransferase) and pcs (coding for a PC synthase), are located on the circular chromosome of A. tumefaciens C58. Recombinant expression of pmtA and pcs in Escherichia coli revealed that the individual proteins carry out the annotated enzyme functions. Both genes and a putative ABC transporter operon downstream of PC are constitutively expressed in A. tumefaciens. The amount of PC in A. tumefaciens membranes reaches around 23% of total membrane lipids. We show that PC is distributed in both the inner and outer membranes. Loss of PC results in reduced motility and increased biofilm formation, two processes known to be involved in virulence. Our work documents the critical importance of membrane lipid homeostasis for diverse cellular processes in A. tumefaciens.  相似文献   

18.
19.
20.
Two of the three known metabolic pathways to serine and glycine have been shown to be present in prototrophic yeast strains, i.e., the phosphorylated pathway from glycolytic intermediates and the glyoxylate pathway from tricarboxylic acid cycle intermediates. Two serine-glycine auxotrophs (ser1 and ser2) were found to be blocked in the phosphoglycerate pathway. The ser1 gene controls l-glutamate:phosphohydroxypyruvate transaminase biosynthesis, and the ser2 gene controls phosphoserine phosphatase biosynthesis. The other pathway to glycine, from isocitrate, is repressed by growth in glucose media, specifically, at isocitrate lyase and at the alanine:glyoxylate transaminase. This pathway is derepressed by growth to stationary phase in glucose media yielding high activity of these enzymes. The phosphorylated pathway appears to be the principal biosynthetic pathway to serine and glycine during growth on sugar media. Strains which are serine-glycine dependent in glucose media became capable of serine-glycine independent growth on acetate media. These results describe a method of physiological control of a secondary metabolic pathway allowing a single lesion in the principal biosynthetic pathway to produce auxotrophy. This may be termed conditional auxotrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号