首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract: Acute nicotine administration stimulated [3H]norepinephrine ([3H]NE) release from cultured fetal locus coeruleus (LC) cells. The effect was concentration dependent, with an EC50 of 0.9 µ M , and was abolished by removal of calcium from, or addition of tetrodotoxin (500 n M ) to, the assay buffer. Other nicotinic receptor agonists stimulated [3H]NE release, with the rank order of potency being (±)-epibatidine > (−)-nicotine > 1,1-dimethyl-4-phenylpiperazinium (DMPP). Whereas (−)-nicotine and (±)-epibatidine exhibited equal maximal responses, DMPP was a partial agonist and (−)-cytisine had no agonist activity. Nicotine-stimulated release of [3H]NE was blocked by nicotinic receptor antagonists, with an order of potency of mecamylamine > lobeline > cytisine > methyllycaconitine > dihydro-β-erythroidine. The pharmacological profile of this nicotinic receptor is largely consistent with that described previously for an α4β2 subunit combination, although discrepancies in the efficacies of agonists were observed. No additivity in NMDA- and nicotine-stimulated [3H]NE release was observed, suggesting a common signal transduction mechanism. However, the pharmacological characteristics of MK-801 blockade of nicotine-induced responses were not consistent with those of an NMDA receptor. We therefore conclude that nicotine directly releases [3H]NE from LC cells and does not act indirectly via activation of glutamate release.  相似文献   

2.
Abstract: Chronic exposure of rats to nicotine increases the number of [3H]nicotine binding sites in the brain; however, it is not clear whether nicotinic cholinergic receptor function is altered as well. In this study, we have used [3H]tetraphenylphosphonium as a probe of synaptosomal membrane potential to investigate whether exposure to nicotine in vivo alters the ability of cerebral cortical synaptosomes to maintain a potential difference and to depolarize in response to in vitro nicotine. Treatment of rats for 14 days with 0.475 mg of nicotine base/day via subcutaneously implanted minipumps resulted in a decrease in the synaptosomal accumulation of [3H]tetraphenylphosphonium in physiological buffer, corresponding to a decrease in estimated membrane potential from –55 mV to –50 mV. The onset of the decrease in membrane potential occurred after 7 days of in vivo nicotine treatment and was significantly correlated with an increase in [3H]nicotine binding to cerebral cortical synaptosomal (P2) membranes. Nicotine, at in vitro concentrations of 3–1,000 μ M , decreased [3H]tetraphenylphosphonium accumulation in cerebral cortical synaptosomes from control animals. When compared to accumulation in buffer alone, in vitro nicotine and other nicotinic agonists did not significantly decrease [3H]tetraphenylphosphonium accumulation in cerebral cortical synaptosomes prepared from rats treated with nicotine in vivo. These studies provide evidence that chronic treatment with nicotine results in an average lower membrane potential in cerebral cortical synaptosomes and in functional down-regulation of the depolarization response to nicotinic cholinergic receptor stimulation.  相似文献   

3.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

4.
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR–mAChR agonists acetylcholine (ACh) and carbachol provoked [3H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 μmol/L, together with 3, 10, or 100 μmol/L (−)nicotine provoked synergistic effect on [3H]DA overflow. The [3H]DA overflow elicited by 100 μmol/L (−)nicotine plus 30 μmol/L oxotremorine was reduced by atropine down to the release produced by (−)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (−)nicotine/oxotremorine evoked [3H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (−)nicotine/oxotremorine. Similarly to (−)nicotine, the selective α4β2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, α4β2 nAChRs exert a permissive role on the releasing function of reportedly M5 mAChRs co-existing on the same dopaminergic nerve endings.  相似文献   

5.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

6.
Abstract: Muscarinic receptor-mediated cyclic GMP formation and release of nitric oxide (NO) (or a precursor thereof) were compared in mouse neuroblastoma N1E-115 cells. [3H]Cyclic GMP was assayed in cells prelabeled with [3H]guanine. Release of NO upon the addition of muscarinic agonists to unlabeled neuroblastoma cells (NO donor cells) was quantitated indirectly by its ability to increase the [3H]cyclic GMP level in labeled cells whose muscarinic receptors were inactivated by irreversible alkylation (NO detector cells). Carbachol increased NO release in a concentration-dependent manner, with half-maximal stimulation at 173 μ M (compared to 96 μ M for direct activation of cyclic GMP formation). The maximal effect of carbachol in stimulating release of NO when measured indirectly was lower than that in elevating [3H]cyclic GMP directly in donor cells. Hemoglobin was more effective in blocking the actions of released NO than in attenuating direct stimulation of [3H]cyclic GMP synthesis. There was a good correlation between the ability of a series of muscarinic agonists to release NO or to activate [3H]cyclic GMP formation directly, and the potency of pirenzepine in inhibiting the two responses. Furthermore, there was a similar magnitude of desensitization of both responses by prolonged receptor activation or stimulation of protein kinase C. NO release was also regulated in relation to the cellular growth phase. A model is proposed in which a fraction of NO generated upon receptor activation does not diffuse extracellularly and stimulates cyclic GMP synthesis within the same cell where it is formed (locally acting NO). The remainder of NO that is extruded extracellularly might travel to neighboring cells (neurotransmitter NO) or might be taken back into the cells of origin (homing NO).  相似文献   

7.
Abstract— At 25°C the accumulation of [3H] dl -2,4-diaminobutyric acid (DABA) into small rat cortical slices was linear with time and a tissue: medium ratio of 35:1 was attained after 60 min. At 37°C the uptake was no longer linear and the tissue: medium ratio at 60 min was 66:1. Uptake was unaffected by the addition of 10 μ m -AOAA and dependent on the presence of Na+ in the incubation media. The uptake was shown to have a high affinity component with a K m of 20.7 μ m and a V max of 28.6 nmol/g/min. IC50's for the inhibition of [3H]DABA uptake by dl -DABA, l -DABA and GABA were 80, 40 and 17 μ m respectively. Two m m β -alanine, however, caused less than 13% inhibition of [3H]DABA uptake. Electron microscopic autoradiographs showed the [3H]DABA to be accumulated by 22% of the identifiable nerve terminals and, after 14 days exposure, the density of silver grains over nerve terminals was 36–38 times higher than that over the rest of the electron micrograph. On the other hand, [3H]DABA was not taken up into rat sensory ganglia and light level autoradiography showed the small amount of [3H]DABA accumulated by the ganglia to be evenly distributed throughout the tissue. Both electrical stimulation for 30 s and exposure of the tissue to a medium containing 47 m m -K+ for 2 min caused a marked increase in the efflux of [3H]DABA from the tissue. Both these effects were abolished by a reduction in Ca2+ concentration and an increase in the Mg2+ concentration of the superfusing medium. These results suggest that l -DABA acts as a 'false transmitter' for the neuronal uptake, storage and release of GABA.  相似文献   

8.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT; 0.5 μM and above) stimulated the release of [3H]dopamine ([3H]DA) from particulate fractions of the carp ( Cyprinus carpio ) retina. The 5-HT effect was dose- and Ca2+-dependent, and was structurally specific. A similar response was not elicited by the other indoles (5,6-dihydroxytryptamine, 5,7-dihydroxytryptamine, 5-hydroxytrypto-phan, or 5-hydroxyindoleacetic acid) examined. An increase in [3H]DA release was elicited by addition of 5-HT agonists (5-methoxytryptamine, 5-methoxy- N,N- dimethyltryptamine, and tryptamine), but not antagonized by three 5-HT antagonists (metergolin, methysergide, and spiperone). Either DA alone or noradrenaline (0.5 m M ) produced a large increase in [3H]DA release from the particulate fractions, but this action was Ca2+-independent. Further, no significant release of [3H]γ-aminobutyric acid could be evoked by 5-HT (0.5 mM) under similar experimental conditions. Taken together, the present data suggest that 5-HT stimulates [3H]DA release from the fish retina through a specific receptor-mediated mechanism on dopaminergic terminals, but not through an exchange or nonspecific phenomenon.  相似文献   

9.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

10.
Abstract: Stores of methionine-enkephalin were labelled on the N -terminal by incubation of whole brain slices with [3H]tyrosine (10 °Ci/ml). The 3H radioactivity corresponding to the position of authentic Met-enkephalin after extraction on Amberlite XAD2 and separation by thin-layer chromatography was taken as an index of synthesis. Maximal incorporation of the labelled tyrosine into Met-enkephalin was attained after 4 h of incubation at 37°C and was inhibited in the presence of 10 μ M cycloheximide. Isolated nerve terminals failed to incorporate any [3H]tyrosine. The labelled compound had opiatelike activity and consisted of the same five amino acids as an authentic standard. Incubations with leucine aminopeptidase indicated that the labelled tyrosine was on the N -terminus and removal of this tyrosine resulted in loss of opiate-like activity. The incorporation of [14C]glycine, selected as an alternative precursor, was consistent with de novo synthesis and not N -terminal exchange. A radioimmunoassay was also used to quantify the amount of labelled Met-enkephalin. KCl (50 m M ) elicited a Ca2+-dependent release of the synthesised [3H]Met-enkephalin from whole brain slices and also from isolated nerve terminals. The release of Met-enkephalin radioimmunoactivity paralleled that of [3H]met-enkephalin. Preliminary investigations have suggested that carbamyl choline inhibited this release and its effect was partially reversed by atropine.  相似文献   

11.
Potential desensitization of brain nicotinic receptors was studied using a [3H]dopamine release assay. Nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes was concentration-dependent with an EC50 of 0.33 ± 0.13 μ M and a Hill coefficient of 1.44 ± 0.18. Desensitization by activating concentrations of nicotine had a similar EC50 and a half-time of 35 s. Concentrations of nicotine that evoked little release also induced a concentration-dependent desensitization (EC50=6.9 plusmn; 3.6 n M , t1/2= 1.6-2.0 min, n H=1.02 ± 0.01). Both types of desensitization produced a maximum 75% decrease in [3H]dopamine release. Recovery from desensitization after exposure to low or activating concentrations of nicotine was time-dependent with half-times of 6.1 min and 12.4 min, respectively. Constants determined for binding of [3H]nicotine to striatal membrane at 22°C included a K Dof 3.7 ± 0.5 n M , Bmax of 67.5 ± 2.2 fmol/mg, and Hill coefficient of 1.07 ± 0.06. Association of nicotine with membrane binding sites was biphasic with half-times of 9 s and 1.8 min. The fast rate process contributed 37% of the total reaction. Dissociation was a uniphasic process with a half-time of 1.6 min. Comparison of constants determined by the release and binding assays indicated that the [3H]-nicotine binding site could be the presynaptic receptor involved in [3H]dopamine release in mouse striatal synaptosomes.  相似文献   

12.
Abstract: The present work tested whether pharmacological activation of protein kinase C (PKC) influences the release of [3H]-acetylcholine ([3H]ACh) synthesized in the presence of vesamicol, an inhibitor of the vesicular acetylcholine transporter (VAChT). Newly synthesized [3H]ACh was released from hippocampal slices by field stimulation (15 Hz) in the absence of vesamicol, but as expected [3H]ACh synthesized during exposure to vesamicol was not released significantly by stimulation. Treatment of slices with the PKC activator phorbol myristate acetate (PMA) decreased the inhibitory effect of vesamicol on [3H]ACh release. The effect of PMA was dose-dependent, was sensitive to calphostin C, a PKC-selective inhibitor, and could not be mimicked by α-PMA, an inactive phorbol ester. PMA did not alter the release of [3H]ACh in the absence of vesamicol, suggesting that the site of PKC action could be related to the VAChT. In agreement with this observation, immunoprecipitation of VAChT from 32P-labeled synaptosomes showed that phosphorylation occurs and that incorporation of 32P in the VAChT protein increases in the presence of PMA. We suggest that PKC alters the output of [3H]ACh formed in the presence of vesamicol and also provide circumstantial evidence for a role of phosphorylation of VAChT in this process.  相似文献   

13.
Abstract— The present study was undertaken to characterize the cholinergic system of primary cell cultures of mouse and rat CNS.
In confirmation of previous reports, primary cultures were found to contain choline acetyltransferase (ChAc). Furthermore they contain acetylcholine (ACh) as measured by two different bioassays. They also synthesize [3H]ACh from [3H]Choline offered to the cultures.
The formation of [3H]ACh is inhibited in the presence of hemicholinium-3 (10−6 m ) to 50% or ouabain (10−3 m ) to 20% of the values found in untreated cultures. Omission of Na + from the incubation solution also diminishes the [3H]ACh formation of the cells.
[3H]ACh is released upon depolarisation by K+ ions in a concentration dependent manner. The release can be prevented by lack of Ca2+ ions in the incubation solution.  相似文献   

14.
Abstract: The rat ventral tegmentum (containing somata and dendrites of mesolimbic dopaminergic neurones) contained 1.3 μmnol/g wet weight of glycine. Slices of ventral tegmentum accumulated exogenous [3H]glycine by an energy-, temperature- and sodium-dependent mechanism. The uptake was mediated by two different transport systems; one system with relatively low affinity for glycine ( Km ∼400 μ m ) and the other a higher affinity for glycine ( Km ∼ 10 μ m ). Small amino acid analogues of glycine inhibited the uptake process, the most potent being taurine and β-alanine (47% and 44% inhibition, respectively, at 1 m m ). Release of exogenous [3H]glycine by elevated potassium and by protoveratrine A was calcium-dependent and tetrodotoxin-sensitive. Glycine (500 μ m -2 m m ) potentiated the protoveratrine A-induced release of exogenous [3H]dopamine from slices of ventral tegmentum; this potentiation was blocked by strychnine (10 μ m ). A convulsant dose of strychnine elevated the concentration of 3,4-dihydroxyphenylacetic acid in the ventral tegmentum. Glycine is likely to be a transmitter in the ventral tegmentum and to have a role regulating the activity of somatodendritic regions of mesolimbic dopaminergic neurones.  相似文献   

15.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

16.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

17.
Abstract: K+-evoked acetyl[3H]choline ([3H]ACh) release was inhibited in a concentration-dependent manner by apomorphine and the D2 agonist quinpirole in striatal slices prepared from euthyroid and hypothyroid rats. However, there was a significant increase in the maximum inhibition observed with both agonists in the hypothyroid compared with the euthyroid group, which paralleled the increased D2 agonist sensitivity reported for stereotyped behavior. The D2 antagonist raclopride decreased, and the D, antagonist SCH 23390 increased, the inhibition of [3H]ACh release by apomorphine, confirming an inhibitory role for D2 receptors and an opposing role for D1 receptors. Because there is no difference in D1 or D2 receptor concentration between the euthyroid and hypothyroid groups, it is suggested that thyroid hormone modulation of D2 receptor sensitivity affects a receptor-mediated event. Following intrastriatal injection of pertussis toxin (PTX), apomorphine no longer inhibited [3H]ACh release. In fact, increased [3H]- ACh release was observed, an effect reduced by SCH 23390, providing evidence that D1 receptors enhance [3H]- ACh release, and confirming that a PTX-sensitive G protein mediates the D2 response. As it has been reported that thyroid hormones modulate G protein expression, this mechanism may underlie their effect on dopamine agonist- mediated inhibition of ACh.  相似文献   

18.
Abstract: The rat ventral tegmentum (containing dendrites and somata of mesolimbic neurones) contained 1.3 μg/g of dopamine, which was reduced to 40% of the control level by reserpine. Slices of ventral tegmentum were able to accumulate and release (elevated potassium or protoveratrine A) exogenous [3H]dopamine. In parallel studies the uptake mechanism in ventral tegmentum was shown to be virtually identical to the nerve terminal uptake of [3H]dopamine by slices of nucleus accumbens. The release of [3H]dopamine was indistinguishable from that observed in substantia nigra, where there is substantial evidence for dendritic mechanisms. Basal adenylate cyclase activity was present, but dopamine-stimulated activity was not detected. A high GABA concentration (7.7 μmol/g) was present in ventral tegmentum, in conjunction with an uptake and a release mechanism for [3H]GABA. GABA and muscimol elicited a small, reproducible efflux of [3H]dopamine, but an interaction between dopamine and [3H]GABA efflux was not observed. The results are in accord with transmitter roles for dopamine and GABA in the somatoden-dritic area of mesolimbic dopaminergic neurons.  相似文献   

19.
Abstract— Regulation of muscarinic acetylcholine receptor concentration by receptor activity in neuron-like NG108-15 hybrid cells is a highly specific process. Receptor levels, monitored by binding of [3H]quinuclidinyl benzilate ([3H]QNB), decreased 50-75% following 24-h incubation of cells with muscarinic agonists, but none of the following cellular processes was altered by this chronic receptor stimulation: (1) glycolytic energy metabolism, measured by [3H]deoxy- d -glucose ([3H]DG) uptake and retention; (2) rate of cell division; (3) transport, measured by [3H]valine and [3H]uridine uptake; (4) RNA biosynthesis, measured by [3H]uridine incorporation; (5) protein biosynthesis, measured by [3H]valine and [35S]methionine incorporation into total protein and into protein fractions obtained by polyacrylamide gel electrophoresis. In contrast, chronic stimulation did cause a threefold decrease in the capacity of carbachol to stimulate phosphatidylinositol (PI) turnover, a receptor-mediated response. In addition to cholinomimetics, the neuroeffector adenosine (1 m m for 24 h) also caused a decrease in [3H]QNB binding levels, but chronic stimulation of α -adrenergic, opiate, prostaglandin E1, and prostaglandin F receptors found on NG108-15 cells caused no changes. The data indicate that loss of muscarinic receptors caused by receptor stimulation is not a consequence of fundamental changes evoked in overall cellular physiology but reflects a specific regulation of cholinoceptive cell responsiveness.  相似文献   

20.
RELEASE AND EXCHANGE STUDIES RELATING TO THE SYNAPTOSOMAL UPTAKE OF GABA   总被引:19,自引:15,他引:4  
Abstract— Synaptosomal release and exchange of [3H]GABA were studied by a superfusion technique which minimizes reuptake. The release of [3H]GABA was increased by depolarizing concentrations of KCl and showed calcium-dependence. Superfusion with 1-1000 μ m unlabelled GABA caused a dose dependent, saturable increase in the release of radioactivity by homoexchange. The exchange process showed high substrate specificity: among the various amino acids and putative neurotransmitters tested, only γ-amino-β-hydroxybutyric acid was a good stimulator of [3H]GABA release. Superfusion with sodium-free medium (NaCl replaced by sucrose) virtually abolished homoexchange. Ouabain also increased the release of [3H]GABA, and its action was additive to that of unlabelled GABA.
The presence of exchange at concentrations that are in the range of the high affinity uptake system, the apparent similarity between calculated rates of exchange and initial uptake rates, the non-detectability of exchange in a condition (Na+ deprivation) which inhibits high affinity uptake, and the lack of decrease of actual GABA concentration in incubation media used for uptake experiments, all suggest that homoexchange accounts for a substantial part of the synaptosomal accumulation of [3H]GABA generally interpreted as high affinity uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号