首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molybdenum cofactor (Moco) is part of the active site of all molybdenum (Mo)-dependent enzymes, except nitrogenase. Moco consists of molybdopterin (MPT), a phosphorylated pyranopterin with an enedithiolate coordinating Mo and it is synthesized by an evolutionary old multistep pathway. The plant protein Cnx1 from Arabidopsis thaliana catalyzes with its two domains (E and G) the terminal step of Moco biosynthesis, the insertion of Mo into MPT. Recently, the high-resolution MPT-bound structure of the Cnx1 G domain (Cnx1G) has been determined (Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., and Schwarz, G. (2004) Nature 430, 803-806). Besides defining the MPT-binding site a novel and unexpected modification of MPT has been identified, adenylated MPT. Here we demonstrate that it is Cnx1G that catalyzes the adenylation of MPT. In vitro synthesized MPT was quantitatively transferred from Escherichia coli MPT synthase to Cnx1G. The subsequent adenylation reaction by Cnx1G was Mg(2+)- and ATP-dependent. Whereas Mn(2+) could partially replace Mg(2+), ATP was the only nucleotide accepted by Cnx1G. Consequently the formation of pyrophosphate was demonstrated, which was dependent on the ability of Cnx1G to bind MPT. Pyrophosphate, either formed in the reaction or added externally, inhibited the Cnx1G-catalyzed MPT adenylation reaction. Catalytically inactive Cnx1G mutant variants showed impaired MPT adenylation confirming that MPT-AMP is the reaction product of Cnx1G. Therefore Cnx1G is a MPT adenylyltransferase catalyzing the activation of MPT, a universal reaction in the Moco synthetic pathway because Cnx1G is able to reconstitute also bacterial and mammalian Moco biosynthesis.  相似文献   

2.
The molybdenum cofactor (Moco) consists of a unique and conserved pterin derivative, usually referred to as molybdopterin (MPT), which coordinates the essential transition metal molybdenum (Mo). Moco is required for the enzymatic activities of all Mo-enzymes, with the exception of nitrogenase and is synthesized by an evolutionary old multi-step pathway that is dependent on the activities of at least six gene products. In eukaryotes, the final step of Moco biosynthesis, i.e. transfer and insertion of Mo into MPT, is catalyzed by the two-domain proteins Cnx1 in plants and gephyrin in mammals. Gephyrin is ubiquitously expressed, and was initially found in the central nervous system, where it is essential for clustering of inhibitory neuroreceptors in the postsynaptic membrane. Gephyrin and Cnx1 contain at least two functional domains (E and G) that are homologous to the Escherichia coli proteins MoeA and MogA, the atomic structures of which have been solved recently. Here, we present the crystal structures of the N-terminal human gephyrin G domain (Geph-G) and the C-terminal Arabidopsis thaliana Cnx1 G domain (Cnx1-G) at 1.7 and 2.6 A resolution, respectively. These structures are highly similar and compared to MogA reveal four major differences in their three-dimensional structures: (1) In Geph-G and Cnx1-G an additional alpha-helix is present between the first beta-strand and alpha-helix of MogA. (2) The loop between alpha 2 and beta 2 undergoes conformational changes in all three structures. (3) A beta-hairpin loop found in MogA is absent from Geph-G and Cnx1-G. (4) The C terminus of Geph-G follows a different path from that in MogA. Based on the structures of the eukaryotic proteins and their comparisons with E. coli MogA, the predicted binding site for MPT has been further refined. In addition, the characterized alternative splice variants of gephyrin are analyzed in the context of the three-dimensional structure of Geph-G.  相似文献   

3.
The molybdenum cofactor (Moco) is synthesized by an ancient and conserved biosynthetic pathway. In plants, the two-domain protein Cnx1 catalyzes the insertion of molybdenum into molybdopterin (MPT), a metal-free phosphorylated pyranopterin carrying an ene-dithiolate. Recently, we identified a novel biosynthetic intermediate, adenylated molybdopterin (MPT-AMP), which is synthesized by the C-terminal G domain of Cnx1. Here, we show that MPT-AMP and molybdate bind in an equimolar and cooperative way to the other N-terminal E domain (Cnx1E). Tungstate and sulfate compete for molybdate, which demonstrates the presence of an anion-binding site for molybdate. Cnx1E catalyzes the Zn(2+)-/Mg(2+)-dependent hydrolysis of MPT-AMP but only when molybdate is bound as co-substrate. MPT-AMP hydrolysis resulted in stoichiometric release of Moco that was quantitatively incorporated into plant apo-sulfite oxidase. Upon Moco formation AMP is release as second product of the reaction. When comparing MPT-AMP hydrolysis with the formation of Moco and AMP a 1.5-fold difference in reaction rates were observed. Together with the strict dependence of the reaction on molybdate the formation of adenylated molybdate as reaction intermediate in the nucleotide-assisted metal transfer reaction to molybdopterin is proposed.  相似文献   

4.
Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis   总被引:1,自引:0,他引:1  
Gephyrin is a multifunctional protein involved in the clustering of inhibitory neuroreceptors. In addition, gephyrin catalyzes the last step in molybdenum cofactor (Moco) biosynthesis essential for the activities of Mo-dependent enzymes such as sulfite oxidase and xanthine oxidoreductase. Functional complexity and diversity of gephyrin is believed to be regulated by alternative splicing in a tissue-specific manner. Here, we investigated eight gephyrin variants with combinations of seven alternatively spliced exons located in the N-terminal G domain, the central domain, and the C-terminal E domain. Their activity in Moco synthesis was analyzed in vivo by reconstitution of gephyrin-deficient L929 cells, which were found to be defective in the G domain of gephyrin. Individual domain functions were assayed in addition and confirmed that variants containing either an additional C5 cassette or missing the C6 cassette are inactive in Moco synthesis. In contrast, different alterations within the central domain retained the Moco synthetic activity of gephyrin. The recombinant gephyrin G domain containing the C5 cassette forms dimers in solution, binds molybdopterin, but is unable to catalyze molybdopterin (MPT) adenylylation. Determination of Moco and MPT content in different tissues showed that besides liver and kidney, brain was capable of synthesizing Moco most efficiently. Subsequent analysis of cultured neurons and glia cells demonstrated glial Moco synthesis due to the expression of gephyrins containing the cassettes C2 and C6 with and without C3.1.  相似文献   

5.
The molybdenum co-factor (Moco) is an essential part of all eukaryotic molybdoenzymes. It is a molybdopterin and reveals the same principal structure in eubacteria, archaebacteria and eukaryotes. This paper reports the isolation of cnx1 , a cDNA clone of Arabidopsis thaliana which complements the Escherichia coli Moco mutant mogA . The mapping data of this cDNA correlate well with the mapping position of the A. thaliana molybdenum cofactor locus chl6 . As mutants in chl6 are known to be repairable by high concentrations of molybdate, the defective gene is very likely to be involved in the last step of Moco biosynthesis, that is, the insertion of molybdenum into molybdopterin. The protein encoded by cnx1 shows a two-domain structure: the N-terminal domain is homologous to the E. coli Moco protein MoeA, the C-terminal domain is homologous to the E. coli Moco proteins MoaB and MogA, respectively. These homologies show that part of the prokaryotic Moco biosynthetic pathway accomplished by monofunctional proteins in E. coli , is performed by a single multifunctional protein in eukaryotes. In addition Cnx1 is homologous to the eukaryotic proteins Gephyrin, a rat neuroprotein, and Cinnamon, a Drosophila protein with a function in Moco biosynthesis. These proteins also show a two-domain structure but the order of the domains is inversed as compared with Cnx1. Southern analysis indicates the existence of at least one further member, in addition to the cnx1 gene, of this novel gene family in the Arabidopsis genome.  相似文献   

6.
Molybdenum (Mo) and tungsten (W) enzymes catalyze important redox reactions in the global carbon, nitrogen, and sulfur cycles. Except in nitrogenases both metals are exclusively associated with a unique metal-binding pterin (MPT) that is synthesized by a conserved multistep biosynthetic pathway, which ends with the insertion and thereby biological activation of the respective element. Although the biosynthesis of Mo cofactors has been intensively studied in various systems, the biogenesis of W-containing enzymes, mostly found in archaea, is poorly understood. Here, we describe the function of the Pyrococcus furiosus MoaB protein that is homologous to bacterial (such as MogA) and eukaryotic proteins (such as Cnx1) involved in the final steps of Mo cofactor synthesis. MoaB reconstituted the function of the homologous Escherichia coli MogA protein and catalyzes the adenylylation of MPT in a Mg2+ and ATP-dependent way. At room temperature reaction velocity was similar to that of the previously described plant Cnx1G domain, but it was increased up to 20-fold at 80 degrees C. Metal and nucleotide specificity for MPT adenylylation is well conserved between W and Mo cofactor synthesis. Thermostability of MoaB is believed to rely on its hexameric structure, whereas homologous mesophilic MogA-related proteins form trimers. Comparison of P. furiosus MoaB to E. coli MoaB and MogA revealed that only MogA is able to catalyze MPT adenylylation, whereas E. coli MoaB is inactive. In summary, MogA, Cnx1G, and MoaB proteins exhibit the same adenylyl transfer activity essential for metal insertion in W or Mo cofactor maturation.  相似文献   

7.
Molybdenum (Mo) is an essential micronutrient for almost all organisms. In eukaryotes, it forms a part of the molybdenum cofactor (Moco), which is required for numerous enzymes involved in carbon, nitrogen and sulfur metabolism. Mo is taken up by cells in the form of molybdate and recently molybdate transporters have been identified in Arabidopsis thaliana and Chlamydomonas reinhardtii. Here, we report the characterization of a novel mutant (DB6) of C. reinhardtii generated by random insertional mutagenesis that is unable to assimilate nitrate as a nitrogen source because it lacks functional nitrate reductase (NR). Besides lacking NR, DB6 also lacks xanthine dehydrogenase activity; a common requirement of both enzymes is Moco. DB6 displays a ‘molybdate‐repairable’ phenotype—growth on nitrate is partially restored by supplementing media with high levels of molybdate. This phenotype is typically associated with mutants defective in either molybdate transport or insertion of Mo into the pterin precursor of Moco. Mo content was found to be significantly lower in DB6 than in the wild‐type strain, AOXR1, which suggests that DB6 is defective in Mo uptake. Genetic complementation with a variety of candidate genes that include the known molybdate transporter MOT1 and DNA that spans the site of mutation was unable to recover the wild‐type phenotype. Taken together, our results indicate that DB6 is a novel molybdate transport‐deficient mutant.  相似文献   

8.
Mendel RR 《Plant cell reports》2011,30(10):1787-1797
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing important reactions within the cell. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In plants, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins that also participate in Moco-insertion into the cognate apoproteins. Xanthine dehydrogenase and aldehyde oxidase, but not the other Mo-enzymes, require a final step of posttranslational activation of their catalytic Mo-center for becoming active.  相似文献   

9.
10.
The final step of molybdenum cofactor biosynthesis in plants is catalyzed by the two-domain protein Cnx1. The G domain of Cnx1 (Cnx1G) binds molybdopterin with high affinity and transfers molybdenum to molybdopterin. Here, we describe the functional and structural characterization of structure-based Cnx1G mutants. For molybdopterin binding residues Thr542 and Ser573 were found to be important because different mutations of those residues resulted in 7- to 26-fold higher k(D) values for molybdopterin binding. Furthermore, we showed that the terminal phosphate of molybdopterin is directly involved in protein-pterin interactions as dephosphorylated molybdopterin binds with one magnitude of order lower affinity to the wild-type protein. Molybdopterin binding was not affected in mutants defective in Ser476, Asp486, or Asp515. However, molybdenum insertion was completely abolished, indicating their important role for catalysis. Based on these results we propose the binding of molybdopterin to a large depression in the structure of Cnx1G formed by beta5, alpha5, beta6, and alpha6, whereas the negatively charged depression formed by the loop between beta3 and alpha4, the N-terminal end of alpha2, the 3(10) helix, and the region between beta6 and alpha6 is involved in catalysis.  相似文献   

11.
The thio-modification of tRNA that occurs in virtually all organisms affects the accuracy and efficiency of protein translation and is therefore biologically important. However, the molecular mechanism responsible for this tRNA modification in plants is largely unclear. We demonstrate here that Arabidopsis sulfurtransferase Cnx5, a ubiquitin-activating enzyme-like (UBA) protein involved in molybdopterin (MPT) biosynthesis, is strictly required for the thio-modification of cytosolic tRNAs in vivo. A previously uncharacterized ubiquitin-like (Ubl) protein Urm11 is also essential for tRNA thio-modification in Arabidopsis. When expressed in Saccharomyces cerevisiae, Cnx5 and Urm11 can substitute for the corresponding yeast orthologs ScUba4 and ScUrm1, respectively, in the thio-modification of yeast cytosolic tRNAs. However, another Ubl protein, Cnx7 of Arabidopsis, which is involved in MPT biosynthesis in conjunction with Cnx5, cannot replace yeast ScUrm1. Interestingly, the expression of a mutant form of Cnx7 in which the carboxyl-terminal six amino acids are substituted by those of Urm11 can significantly restore the thio-modification of tRNAs in the yeast urm1Δ mutant. These findings suggest that in Arabidopsis the common UBA protein Cnx5 collaborates with two functionally differentiated Ubl proteins, Urm11 and Cnx7, in the thio-modification of tRNA and MPT biosynthesis, respectively. Phylogenetic analysis revealed that although most eukaryotes contained a Cnx5-Urm11 ortholog pair and the tRNA thio-modification some fungi, including S. cerevisiae, had lost the Cnx7 ortholog and the ability to synthesize the molybdenum cofactor.  相似文献   

12.
The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803-806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.  相似文献   

13.
The molybdenum cofactor (Moco), a highly conserved pterin compound coordinating molybdenum (Mo), is required for the activity of all Mo-dependent enzymes with the exception of nitrogenase. Moco is synthesized by a unique and evolutionary old multi-step pathway with two intermediates identified so far, the sulfur-free and metal-free pterin derivative precursor Z and molybdopterin, a pterin with an enedithiolate function essential for Mo ligation. The latter pterin component is believed to form a tetrahydropyranopterin similar to the one found for Moco in the crystal structure of Mo as well as tungsten (W) enzymes. Here we report the spectroscopic characterization and structure elucidation of precursor Z purified from Escherichia coli overproducing MoaA and MoaC, two proteins essential for bacterial precursor Z synthesis. We have shown that purified precursor Z is as active as precursor Z present in E. coli cell extracts, demonstrating that no modifications during the purification procedure have occurred. High resolution electrospray ionization mass spectrometry afforded a [M + H]+ ion compatible with a molecular formula of C10H15N5O8P. Consequently 1H NMR spectroscopy not allowed structural characterization of the molecule but confirmed that this intermediate undergoes direct oxidation to the previously well characterized non-productive follow-up product compound Z. The 1H chemical shift and coupling constant data are incompatible with previous structural proposals and indicate that precursor Z already is a tetrahydropyranopterin system and carries a geminal diol function in the C1' position.  相似文献   

14.
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.  相似文献   

15.
The molybdenum cofactor (Moco) containing enzymes aldehyde oxidase and xanthine dehydrogenase (XDH) require for activity a sulfuration step that inserts a terminal sulfur ligand into Moco. XdhC was shown to be essential for the production of active XDH in Rhodobacter capsulatus but is itself not a subunit of the purified enzyme. XdhC binds stoichiometric amounts of Moco and is further able to transfer its bound Moco to XDH. Previous work suggested that XdhC particularly stabilizes the sulfurated form of Moco before the insertion into XDH. In this work, we identify an R. capsulatus l-cysteine desulfurase, NifS4, which is involved in the formation of the Mo=S ligand of Moco. We show that NifS4 interacts with XdhC and not with XDH. NifS4 mobilizes sulfur from l-cysteine by formation of a protein-bound persulfide intermediate and transfers this sulfur further to Moco. This reaction was shown to be more effective than the chemical sulfuration of Moco using sulfide as sulfur source. Further studies clearly showed that Moco is sulfurated before the insertion into XDH, while it is bound to XdhC. Conclusively, XdhC has a versatile role in R. capsulatus: binding of Moco, interaction with NifS4 for the sulfuration of Moco, protection of sulfurated Moco from oxidation, and further transfer to XDH.  相似文献   

16.
The molybdenum cofactor (Moco) exists in different variants in the cell and can be directly inserted into molybdoenzymes utilizing the molybdopterin (MPT) form of Moco. In bacteria such as Rhodobacter capsulatus and Escherichia coli, MPT is further modified by attachment of a GMP nucleotide, forming MPT guanine dinucleotide (MGD). In this work, we analyzed the distribution and targeting of different forms of Moco to their respective user enzymes by proteins that bind Moco and are involved in its further modification. The R. capsulatus proteins MogA, MoeA, MobA, and XdhC were purified, and their specific interactions were analyzed. Interactions between the protein pairs MogA-MoeA, MoeA-XdhC, MoeA-MobA, and XdhC-MobA were identified by surface plasmon resonance measurements. In addition, the transfer of Moco produced by the MogA-MoeA complex to XdhC was investigated. A direct competition of MobA and XdhC for Moco binding was determined. In vitro analyses showed that XdhC bound to MobA, prevented the binding of Moco to MobA, and thereby inhibited MGD biosynthesis. The data were confirmed by in vivo studies in R. capsulatus cells showing that overproduction of XdhC resulted in a 50% decrease in the activity of bis-MGD-containing Me(2)SO reductase. We propose that, in bacteria, the distribution of Moco in the cell and targeting to the respective user enzymes are accomplished by specific proteins involved in Moco binding and modification.  相似文献   

17.
18.
Cell biology of molybdenum in plants and humans   总被引:1,自引:0,他引:1  
The transition element molybdenum (Mo) needs to be complexed by a special cofactor in order to gain catalytic activity. With the exception of bacterial Mo-nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor Moco, which in different variants is the active compound at the catalytic site of all other Mo-containing enzymes. In eukaryotes, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also requires iron, ATP and copper. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms. In humans, Moco deficiency is a severe inherited inborn error in metabolism resulting in severe neurodegeneration in newborns and causing early childhood death. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

19.
Cell biology of molybdenum   总被引:7,自引:0,他引:7  
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing diverse key reactions in the global carbon, sulfur and nitrogen metabolism. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In eukaryotes, the most prominent Mo-enzymes are (1) sulfite oxidase, which catalyzes the final step in the degradation of sulfur-containing amino acids and is involved in detoxifying excess sulfite, (2) xanthine dehydrogenase, which is involved in purine catabolism and reactive oxygen production, (3) aldehyde oxidase, which oxidizes a variety of aldehydes and is essential for the biosynthesis of the phytohormone abscisic acid, and in autotrophic organisms also (4) nitrate reductase, which catalyzes the key step in inorganic nitrogen assimilation. All Mo-enzymes, except plant sulfite oxidase, need at least one more redox active center, many of them involving iron in electron transfer. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. Moco as released after synthesis is likely to be distributed to the apoproteins of Mo-enzymes by putative Moco-carrier proteins. Xanthine dehydrogenase and aldehyde oxidase, but not sulfite oxidase and nitrate reductase, require the post-translational sulfuration of their Mo-site for becoming active. This final maturation step is catalyzed by a Moco-sulfurase enzyme, which mobilizes sulfur from l-cysteine in a pyridoxal phosphate-dependent manner as typical for cysteine desulfurases.  相似文献   

20.
The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys?3?, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys?3?. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys2??, was identified. Furthermore, the active-site Cys?3? was found to be located on top of a loop structure, formed by the two flanking residues Cys?2? and Cys?3?, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys?2? and Cys?3? are within disulfide bond distance and that a persulfide transfer from Cys?3? to Cys2?? is indeed possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号