首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catabolic diversity of wetland microbial communities may be a sensitive indicator of nutrient loading or changes in environmental conditions. The objectives of this study were to assess the response of periphyton and microbial communities in water conservation area-2a (WCA-2a) of the Everglades to additions of C-substrates and inorganic nutrients. Carbon dioxide and CH4 production rates were measured using 14 days incubation for periphyton, which typifies oligotrophic areas, and detritus, which is prevalent at P-impacted areas of WCA-2a. The wetland was characterized by decreasing P levels from peripheral to interior, oligotrophic areas. Microbial biomass and N mineralization rates were higher for oligotrophic periphyton than detritus. Methane production rates were also higher for unamended periphyton (80 mg CH4-C kg−1 d−1) than detritus (22 mg CH4-C kg−1 d−1), even though the organic matter content was higher for detritus (80%) than periphyton (69%). Carbon dioxide production for unamended periphyton (222 mg CO2-C kg−1 d−1) was significantly greater than unamended detritus (84 mg CO2-C kg−1 d−1). The response of the heterotrophic microbial community to added C-substrates was related to the nutrient status of the wetland, as substrate-induced respiration (SIR) was higher for detritus than periphyton. Amides and polysaccharides stimulated SIR more than other C-substrates, and methanogenesis was greater contributor to SIR for periphyton than detritus. Inorganic P addition stimulated CO2 and CH4 production for periphyton but not detritus, indicating a P limitation in the interior areas of WCA-2a. Continued nutrient loading into oligotrophic areas of WCA-2a or enhanced internal nutrient cycling may stimulate organic matter decomposition and further contribute to undesirable changes to the Everglades ecosystem caused by nutrient enrichment.  相似文献   

2.
Sparse Ulmus pumila woodlands play an important role in contributing to ecosystem function in semi-arid grassland of northern China. To understand the key attributes of soil carbon cycling in U. pumila woodland, we studied dynamics of soil respiration in the canopy field (i.e., the projected crown cover area) and the open field at locations differing in distance (i.e., at 1–1.5, 3–4, 10, and >15 m) to tree stems from July through September of 2005, and measured soil biotic factors (e.g., fine root mass, soil microbial biomass, and activity) and abiotic factors [e.g., soil water content (SWC) and organic carbon] in mid-August. Soil respiration was further separated into root component and microbial component at the end of the field measurement in September. Results showed that soil respiration had a significant exponent relationship with soil temperature at 10-cm depth. The temperature sensitivity index of soil respiration, Q 10, was lower than the global average of 2.0, and declined significantly (P < 0.05) with distance. The rate of soil respiration was generally greater in the canopy field than in the open field; monthly mean of soil respiration was 305.5–730.8 mg CO2 m−2 h−1 in the canopy field and 299.6–443.1 mg CO2 m−2 h−1 in the open field from July through September; basal soil respiration at 10°C declined with distance, and varied from ~250 mg CO2 m−2 h−1 near tree stems to <200 mg CO2 m−2 h−1 in the open field. Variations in soil respiration with distance were consistent with patterns of SWC, fine root mass, microbial biomass and activities. Regression analysis indicated that soil respiration was tightly coupled with microbial respiration and only weakly related to root respiration. Overall, variations in SWC, soil nutrients, microbial biomass, and microbial activity are largely responsible for the spatial heterogeneity of soil respiration in this semi-arid U. pumila woodland.  相似文献   

3.
Gross photosynthesis and respiration rates of leaves at different canopy heights in a Rhizophora stylosa Griff. stand were measured monthly over 1 year at Manko Wetland, Okinawa Island, Japan, which is the northern limit of its distribution. The light-saturated net photosynthesis rate for the leaves at the top of the canopy showed a maximum value of 17 μmol CO2 m−2 s−1 in warm season and a minimum value of 6 μmol CO2 m−2 s−1 in cold season. The light-saturated gross photosynthesis and dark respiration rates of the leaves existing at the top of the canopy were 2−7 times and 3–16 times, respectively, those of leaves at the bottom of the canopy throughout the year. The light compensation point of leaves showed maximum and minimum peaks in warm season and cold season, respectively. The annual canopy gross photosynthesis, foliage respiration, and surplus production were estimated as 117, 49, and 68 t CO2 ha−1 year−1, respectively. The energy efficiency of the annual canopy gross photosynthesis was 2.5%. The gross primary production GPP fell near the regression curve of GPP on the product of leaf area index and warmth index, the regression curve which was established for forests in the Western Pacific with humid climates.  相似文献   

4.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

5.
Humans have increased the availability of nutrients including nitrogen and phosphorus worldwide; therefore, understanding how microbes process nutrients is critical for environmental conservation. We examined nutrient limitation of biofilms colonizing inorganic (fritted glass) and organic (cellulose sponge) substrata in spring, summer, and autumn in three streams in Michigan, USA. Biofilms were enriched with nitrate (NO3 ), phosphate (PO4 3−), ammonium (NH4 +), NO3  + PO4 3−, NH4 + + PO4 3−, or none (control). We quantified biofilm structure and function as chlorophyll a (i.e., primary producer biomass) and community respiration on all substrata. In one stream, we characterized bacterial and fungal communities on cellulose in autumn using clone library sequencing and denaturing gradient gel electrophoresis to determine if community structure was linked to nutrient limitation status. Despite oligotrophic conditions, primary producer biomass was infrequently nutrient limited. In contrast, respiration on organic substrata was frequently limited by N + P combinations. We found no difference between biofilm response to NH4 + versus NO3 enrichment, although the response to both N-species was positively related to water column PO4 3− concentrations and temperature. Molecular analysis for fungal community composition suggested no relationship to nutrient limitation, but the dominant members of the bacterial community on cellulose were different on NO3 , PO43, and NO3  + PO4 3− treatments relative to control, NH4 +, and NH4 + + PO4 3− treatments, which matched patterns for biofilm respiration rates from each treatment. Our results show discrete patterns of nutrient limitation dependent upon substratum type and season, and imply changes in bacterial community structure and function may be linked following nutrient enrichment in streams.  相似文献   

6.
We measured the impact of riparian zone vegetation on ecosystem metabolism in paired forested and meadow reaches on 13 streams in southeastern Pennsylvania and Maryland, USA. Metabolism estimates were based on open-system measurements of dissolved oxygen changes, with reaeration determined from propane evasion. Daily gross primary productivity (GPP) in meadow and forested reaches averaged 2.85 and 0.86 g O2 m−2 d−1, respectively, at water temperatures of 12°C or greater when the forest canopy was developed and 1.74 and 1.09 g O2 m−2 d−1, respectively, at temperatures below 12°C when the canopy was bare. Community respiration (CR24) also was greater in meadow reaches than in forested reaches, averaging 5.58 and 3.57 g O2 m−2 d−1, respectively, in the warm season and 4.87 and 2.88 g O2 m−2 d−1, respectively, during the cold season. Thus, both meadow and forested reaches were heterotrophic. Forested reaches were always wider and nearly always shallower than companion meadow reaches. When ecosystem function was assessed per unit of stream length, the difference in average GPP between meadow and forested reaches was reduced from three-fold to 1.9-fold in the warm season, and mean GPP was greater in the forested reaches during the cold season. Mean CR24 per meter stream length was greater in forested reaches during both seasons. Even though riparian shading reduced primary productivity per unit area of streambed, the greater stream width of the forested reaches counteracted that reduction in part. Thus, when rates of ecosystem function were expressed per length of stream, differences between reaches were always smaller than when expressed per area, and activity per unit stream length was sometimes greater in forested reaches than in meadow reaches.  相似文献   

7.
The influence of land use on potential fates of nitrate (NO3 ) in stream ecosystems, ranging from denitrification to storage in organic matter, has not been documented extensively. Here, we describe the Pacific Northwest component of Lotic Intersite Nitrogen eXperiment, phase II (LINX II) to examine how land-use setting influences fates of NO3 in streams. We used 24 h releases of a stable isotope tracer (15NO3-N) in nine streams flowing through forest, agricultural, and urban land uses to quantify NO3 uptake processes. NO3 uptake lengths varied two orders of magnitude (24–4247 m), with uptake rates (6.5–158.1 mg NO3-N m−2 day−1) and uptake velocities (0.1–2.3 mm min−1) falling within the ranges measured in other LINX II regions. Denitrification removed 0–7% of added tracer from our streams. In forest streams, 60.4 to 77.0% of the isotope tracer was exported downstream as NO3 , with 8.0 to 14.8% stored in wood biofilms, epilithon, fine benthic organic matter, and bryophytes. Agricultural and urban streams with streamside forest buffers displayed hydrologic export and organic matter storage of tracer similar to those measured in forest streams. In agricultural and urban streams with a partial or no riparian buffer, less than 1 to 75% of the tracer was exported downstream; much of the remainder was taken up and stored in autotrophic organic matter components with short N turnover times. Our findings suggest restoration and maintenance of riparian forests can help re-establish the natural range of NO3 uptake processes in human-altered streams.  相似文献   

8.
The ecosystem carbon budget was estimated in a Japanese Zoysia japonica grassland. The green biomass started to grow in May and peaked from mid-July to September. Seasonal variations in soil CO2 flux and root respiration were mediated by changes in soil temperature. Annual soil CO2 flux was 1,121.4 and 1,213.6 g C m−2 and root respiration was 471.0 and 544.3 g C m−2 in 2007 and 2008, respectively. The root respiration contribution to soil CO2 flux ranged from 33% to 71%. During the growing season, net primary production (NPP) was 747.5 and 770.1 g C m−2 in 2007 and 2008, respectively. The biomass removed by livestock grazing (GL) was 122.1 and 102.7 g C m−2, and the livestock returned 28.2 and 25.6 g C m−2 as fecal input (FI) in 2007 and 2008, respectively. The decomposition of FI (DL, the dry weight loss due to decomposition) was very low, 1.5 and 1.4 g C m−2, in 2007 and 2008. Based on the values of annual NPP, soil CO2 flux, root respiration, GL, FI, and DL, the estimated carbon budget of the grassland was 1.7 and 22.3 g C m−2 in 2007 and 2008, respectively. Thus, the carbon budget of this Z. japonica grassland ecosystem remained in equilibrium with the atmosphere under current grazing conditions over the 2 years of the study.  相似文献   

9.
Gross production and carbon cycling in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, were determined, and then a compartment model showing the carbon stock and cycling within the ecosystem was developed. Aboveground carbon stock was 52.3 tC ha−1, increasing at a rate of 3.6 tC ha−1 year−1. Belowground carbon stock was 20.8 tC ha−1 in the root system and 92.0 tC ha−1 in the soil. Aboveground net production was 11.2 tC ha−1 year−1. Belowground net production was crudely estimated at 4.5 tC ha−1 year−1. The gross production was estimated at 41.8 tC ha−1 year−1 by summing the amount of outflow to the environment and the increment in biomass. Leaves consumed 13.7 tC ha−1 year−1 by respiration; the rest (41.8−13.7=28.1 tC ha−1 year−1) was surplus production of the leaves and flowed into the other compartments. The amounts of construction and maintenance respiration of the aboveground compartments were 3.4 and 18.5 tC ha−1 year−1, respectively. The annual amount of soil respiration was 11.2 tC ha−1 year−1. Soil respiration levels of 4.3 and 3.1 tC ha−1 year−1 were estimated for the flow of root respiration and root detritus. The proportion of net to gross production was 37%, which fell within the range of young and mature forests. A shorter life span of culms, compared to tree trunks, resulted in smaller biomass accumulation ratio (biomass/net production) in the ecosystem, of 4.66.  相似文献   

10.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

11.
We studied the functional response of the freshwater unionid bivalve Anodonta anatina, feeding on five phytoplankton strains differing in food quality: the small green alga Scenedesmus obliquus, a toxic and a non-toxic strain of the filamentous cyanobacterium Planktothrix agardhii and a toxic and a non-toxic strain of the coccoid cyanobacterium Microcystis aeruginosa. On S. obliquus, A. anatina had a type II functional response with a maximum mass-specific ingestion rate (IRmax) of 5.24 mg C g DW−1 h−1 and a maximum mass-specific clearance rate (CRmax) of 492 (±38) ml g DW−1 h−1, the highest values for all the phytoplankton strains that were investigated. On toxic and non-toxic P. agardhii filaments, A. anatina also had a type II functional response, but IRmax and CRmax were considerably lower (IRmax 1.90 and 1.56 mg C g DW−1 h−1; CRmax 387 (±97) and 429 (±71) ml g DW−1 h−1, respectively) than on S. obliquus. Toxicity of P. agardhii had no effect on the filtration rate of the mussels. On the non-toxic M. aeruginosa (small coccoid cells), we also observed a type II functional response, although a type I functional response fitted almost as good to these data. For the colonial and toxic M. aeruginosa, a type I functional response fitted best to the data: IR increased linearly with food concentration and CR remained constant. CRmax and IRmax values for the (colonial) toxic M. aeruginosa (383 (±40) ml g DW−1 h−1; 3.7 mg C g DW−1 h−1) demonstrated that A. anatina filtered and ingested this cyanobacterium as good as the other cyanobacterial strains. However, on the non-toxic M. aeruginosa we observed the lowest CRmax of all phytoplankters (246 (±23) ml g DW−1 h−1, whereas IRmax was similar to that on toxic M. aeruginosa. The high maximum ingestion rates on S. obliquus and M. aeruginosa indicate a short handling time of these phytoplankton species. The high clearance rates on S. obliquus, toxic M. aeruginosa and P. agardhii reflect a high effort of the mussels to filter these particles out of the water column at low concentrations. The low clearance rates on non-toxic M. aeruginosa may be explained by the small size and coccoid form of this cyanobacterium, which may have impaired A. anatina to efficiently capture the cells. Although A. anatina had relatively high maximum clearance rates on non-toxic and toxic P. agardhii, this cyanobacterium does not seem to be a good food source, because of the observed high rates of pseudofaeces production and hence low ingestion rates.  相似文献   

12.
The effects of seasonality and dilution stress on the functioning of Rambla Salada, a hypersaline Mediterranean stream in SE Spain, were evaluated. The stream is subject to diffuse freshwater inputs from the drainage of intensively irrigated agriculture in the catchment and periodic losses of water through an irrigation channel. Metabolic rates and the biomass of primary producers and consumers were estimated over a 2-year period. During the first year several dilution events occurred, while during the second year the salinity recovery reached predisturbance levels. Functional indicators were compared in the disturbance and recovery salinity periods. Primary production and respiration rates in the Rambla Salada ranged between 0.07–21.05 and 0.19–17.39 g O2 m−2 day−1, respectively. The mean values for these variables were 7.35 and 5.48 g O2 m−2 day−1, respectively. Mean net daily metabolism rate was 1.87 ± 0.52 g O2 m−2 day−1 and mean production/respiration ratio was 2.48 ± 1.1, reflecting autotrophic metabolism. The metabolic rates showed the typical seasonal pattern of Mediterranean open canopy streams. Therefore, gross primary production (GPP) and ecosystem respiration (ER) registered maximum values in summer, intermediate values in spring and autumn and minimum values in winter. The metabolic rates and biomass of consumers were greater in the disturbance period than in the recovery period. However, they did not show significant differences between periods due to their important dependence on seasonal cycle. Seasonality accounted for much of the temporal variability in GPP and ER (76% and 83% in the multiregression models, respectively). Light availability seems to be the most important factor for GPP and ER in the Rambla Salada. Autotrophic biomass responded more to variations in discharge and conductivity than to seasonal variations. In fact, it was severely affected by freshwater inputs after which the epipelic biomass decreased significantly and Cladophora glomerata proliferated rapidly. Epipelic algal biomass was the most sensitive parameter to dilution disturbance. Handling editor: Luigi Naselli-Flores  相似文献   

13.
Massive anthropogenic acceleration of the global nitrogen (N) cycle has stimulated interest in understanding the fate of excess N loading to aquatic ecosystems. Nitrate (NO3 ) is traditionally thought to be removed mainly by microbial respiratory denitrification coupled to carbon (C) oxidation, or through biomass assimilation. Alternatively, chemolithoautotrophic bacterial metabolism may remove NO3 by coupling its reduction with the oxidation of sulfide to sulfate (SO4 2−). The NO3 may be reduced to N2 or to NH4 +, a form of dissimilatory nitrate reduction to ammonium (DNRA). The objectives of this study were to investigate the importance of S oxidation as a NO3 removal process across diverse freshwater streams, lakes, and wetlands in southwestern Michigan (USA). Simultaneous NO3 removal and SO4 2− production were observed in situ using modified “push-pull” methods in nine streams, nine wetlands, and three lakes. The measured SO4 2− production can account for a significant fraction (25–40%) of the overall NO3 removal. Addition of 15NO3 and measurement of 15NH4 + production using the push–pull method revealed that DNRA was a potentially important process of NO3 removal, particularly in wetland sediments. Enrichment cultures suggest that Thiomicrospira denitrificans may be one of the organisms responsible for this metabolism. These results indicate that NO3 -driven SO4 2− production could be widespread and biogeochemically important in freshwater sediments. Removal of NO3 by DNRA may not ameliorate problems such as eutrophication because the N remains bio-available. Additionally, if sulfur (S) pollution enhances NO3 removal in freshwaters, then controls on N processing in landscapes subject to S and N pollution are more complex than previously appreciated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
We studied life history and secondary production of a caddisfly scraper, Glossosoma nigrior, in two Alabama streams. Collier Creek, located within the Appalachian Plateau physiographic province, is underlain by sandstone bedrock, while Hendrick Mill Branch is located in the Valley and Ridge physiographic province with limestone bedrock. G. nigrior populations in both streams exhibited trivoltine life histories, which were attributed to the higher water temperature regimes than those found in more northern streams. Mean larval density (556 m−2) and biomass (B) (49.2 mg AFDM m−2) were much higher in Hendrick Mill Branch than Collier Creek (78 m−2 and 6.7 mg AFDM m−2). G. nigrior in Hendrick Mill Branch maintained continuous larval growth and higher larval density than Collier Creek throughout the year mainly due to a greater availability of optimal habitat, a more stable hydrology, and warmer winter water temperature. These factors also resulted in the much higher annual secondary production (P) in Hendrick Mill Branch (965 mg AFDM m−2; P/B = 18.3) than Collier Creek (115 mg AFDM m−2; P/B = 17.9). Gut content analysis revealed that algae (>50%) and detritus (>40%) were the major diet items for G. nigrior, and the majority of secondary production (>80%) was contributed by the consumption of algae. Glossosoma populations play an important role in trophic linkage in these streams with their high production and grazing activities. Handling editor: D. Dudgeon  相似文献   

15.
Through use of a recently developed technique that can measure CO2 exchange by individual attached roots, the influences of soil O2 and CO2 concentrations on root respiration were determined for two species of shallow-rooted cacti that typically occur in porous, well-drained soils. Although soil O2 concentrations in the rooting zone in the field were indistinguishable from that in the ambient air (21% by volume), the CO2 concentrations 10 cm below the soil surface averaged 540 μLL−1 for the barrel cactusFerocactus acanthodes under dry conditions and 2400 μLL−1 under wet conditions in a loamy sand. For the widely cultivated platyopuntiaOpuntia ficus-indica in a sandy clay loam, the CO2 concentration at 10 cm averaged 1080 μLL−1 under dry conditions and 4170 μLL−1 under wet conditions. For both species, the respiration rate in the laboratory was zero at 0% O2 and increased to its maximum value at 5% O2 for rain roots (roots induced by watering) and 16% O2 for established roots. Established roots ofO. ficus-indica were slightly more tolerant of elevated CO2 than were those ofF. acanthodes, 5000 μLL−1 inhibiting respiration by 35% and 46%, respectively. For both species, root respiration was reduced to zero at 20,000 μLL−1 (2%) CO2. In contrast to the reversible effects of 0% O2, inhibition by 2% CO2 was irreversible and led to the death of cortical cells in established roots in 6 h. Although the restriction of various cacti and other CAM plants to porous soils has generally been attributed to their requirement for high O2 concentrations, the present results indicate that susceptibility of root respiration to elevated soil CO2 concentrations may be more important.  相似文献   

16.
Rhinocladiella similis biodegraded volatile organic compounds (VOCs) of different polarity in gas-phase biofilters. Elimination capacities, (EC) of 74 ghexane m−3 h−1, 230 gethanol m−3 h−1, 85 gtoluene m−3 h−1 and 30 gphenol m−3 h−1 were obtained. EC values correlated with the solubility of the VOCs. R. similis grown with n-hexane or ethanol in biofilters packed with Perlite showed that the surface hydrophobicity was higher with n-hexane than ethanol. The hydrophobin-like proteins extracted from the mycelium produced with n-hexane (15 kDa) were different from those in the ethanol biofilter (8.5 kDa and 7 kDa).  相似文献   

17.
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.  相似文献   

18.
Woody debris (WD) is an important component of forest C budgets, both as a C reservoir and source of CO2 to the atmosphere. We used an infrared gas analyzer and closed dynamic chamber to measure CO2 efflux from downed coarse WD (CWD; diameter≥7.5 cm) and fine WD (FWD; 7.5 cm>diameter≥2 cm) to assess respiration in a selectively logged forest and a maturing forest (control site) in the northeastern USA. We developed two linear regression models to predict WD respiration: one based on WD temperature, moisture, and size (R 2=0.57), and the other on decay class and air temperature (R 2=0.32). WD respiration (0.28±0.09 Mg C ha−1 year−1) contributed only ≈2% of total ecosystem respiration (12.3±0.7 Mg C ha−1 year−1, 1999–2003), but net C flux from CWD accounted for up to 30% of net ecosystem exchange in the maturing forest. C flux from CWD on the logged site increased modestly, from 0.61±0.29 Mg C ha−1 year−1 prior to logging to 0.77±0.23 Mg C ha−1 year−1 after logging, reflecting increased CWD stocks. FWD biomass and associated respiration flux were ≈7 times and ≈5 times greater, respectively, in the logged site than the control site. The net C flux associated with CWD, including inputs and respiratory outputs, was 0.35±0.19 Mg C ha−1 year−1 (net C sink) in the control site and −0.30±0.30 Mg C ha−1 year−1 (net C source) in the logged site. We infer that accumulation of WD may represent a small net C sink in maturing northern hardwood forests. Disturbance, such as selective logging, can enlarge the WD pool, increasing the net C flux from the WD pool to the atmosphere and potentially causing it to become a net C source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
The modification of large areas of tropical forest to agricultural uses has consequences for the movement of inorganic nitrogen (N) from land to water. Various biogeochemical pathways in soils and riparian zones can influence the movement and retention of N within watersheds and affect the quantity exported in streams. We used the concentrations of NO3 and NH4 + in different hydrological flowpaths leading from upland soils to streams to investigate inorganic N transformations in adjacent watersheds containing tropical forest and established cattle pasture in the southwestern Brazilian Amazon Basin. High NO3 concentrations in forest soil solution relative to groundwater indicated a large removal of N mostly as NO3 in flowpaths leading from soil to groundwater. Forest groundwater NO3 concentrations were lower than in other Amazon sites where riparian zones have been implicated as important N sinks. Based on water budgets for these watersheds, we estimated that 7.3–10.3 kg N ha−1 y−1 was removed from flowpaths between 20 and 100 cm, and 7.1–10.2 kg N ha−1 y−1 was removed below 100 cm and the top of the groundwater. N removal from vertical flowpaths in forest exceeded previously measured N2O emissions of 3.0 kg N ha−1 y−1 and estimated emissions of NO of 1.4 kg N ha−1 y−1. Potential fates for this large amount of nitrate removal in forest soils include plant uptake, denitrification, and abiotic N retention. Conversion to pasture shifted the system from dominance by processes producing and consuming NO3 to one dominated by NH4 +, presumably the product of lower rates of net N mineralization and net nitrification in pasture compared with forest. In pasture, no hydrological flowpaths contained substantial amounts of NO3 and estimated N removal from soil vertical flowpaths was 0.2 kg N ha−1 y−1 below the depth of 100 cm. This contrasts with the extent to which agricultural sources dominate N inputs to groundwater and stream water in many temperate regions. This could change, however, if pasture agriculture in the tropics shifts toward intensive crop cultivation.  相似文献   

20.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号