首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of gastrointestinal helminth infections of humans and livestock almost exclusively relies on the detection of eggs or larvae in faeces, followed by manual counting and morphological characterisation to differentiate species using microscopy-based techniques. However, molecular approaches based on the detection and quantification of parasite DNA are becoming more prevalent, increasing the sensitivity, specificity and throughput of diagnostic assays. High-throughput sequencing, from single PCR targets through to the analysis of whole genomes, offers significant promise towards providing information-rich data that may add value beyond traditional and conventional molecular approaches; however, thus far, its utility has not been fully explored to detect helminths in faecal samples. In this study, low-depth whole genome sequencing, i.e. genome skimming, has been applied to detect and characterise helminth diversity in a set of helminth-infected human and livestock faecal material. The strengths and limitations of this approach are evaluated using three methods to characterise and differentiate metagenomic sequencing data based on (i) mapping to whole mitochondrial genomes, (ii) whole genome assemblies, and (iii) a comprehensive internal transcribed spacer 2 (ITS2) database, together with validation using quantitative PCR (qPCR). Our analyses suggest that genome skimming can successfully identify most single and multi-species infections reported by qPCR and can provide sufficient coverage within some samples to resolve consensus mitochondrial genomes, thus facilitating phylogenetic analyses of selected genera, e.g. Ascaris spp. Key to this approach is both the availability and integrity of helminth reference genomes, some of which are currently contaminated with bacterial and host sequences. The success of genome skimming of faecal DNA is dependent on the availability of vouchered sequences of helminths spanning both taxonomic and geographic diversity, together with methods to detect or amplify minute quantities of parasite nucleic acids in mixed samples.  相似文献   

2.
Emerging helminth zoonoses   总被引:4,自引:0,他引:4  
As our ability to recognise and diagnose human disease caused by helminth parasites has improved, so our understanding of the epidemiology and clinical manifestations of these diseases has improved. Humans can develop patent infection with a wide range of helminth parasites, whose natural host is another vertebrate. Rather than focusing on a comprehensive review of zoonotic helminth infections, this review describes in detail examples of zoonotic helminth infections that have newly appeared in human populations, or have existed but are increasing in incidence or geographic range. Examples include intestinal capillariasis, anisakidosis, eosinophilic enteritis, oesophagostomiasis and gnathostomiasis. Potential reasons for the emergence of these infections, including changes in social, dietary or cultural mores, environmental changes, and the improved recognition of heretofore neglected infections often coupled with an improved ability to diagnose infection are discussed.  相似文献   

3.
4.
Eosinophilia - an increase in the number of eosinophils in the blood or tissues - has historically been recognized as a distinctive feature of helminth infections in mammals. Yet the precise functions of these cells are still poorly understood. Many scientists consider that their primary function is protection against parasites, although there is little unequivocal in vivo evidence to prove this. Eosinophils are also responsible for considerable pathology in mammals because they are inevitably present in large numbers in inflammatory lesions associated with helminth infections or allergic conditions. In this review, Carolyn Behm and Karen Ovington outline some of the cellular and biological properties of eosinophils and evaluate the evidence for their role(s) in parasitic infections.  相似文献   

5.
The current global initiative to eliminate lymphatic filariasis is a major renewed commitment to reduce or eliminate the burden of one of the major helminth infections from resource-poor communities of the world. Mathematical models of filariasis transmission can serve as an effective tool for guiding the scientific development and management of successful community-level intervention programmes by acting as analytical frameworks for integrating knowledge regarding parasite transmission dynamics with programmatic factors. However, the power of these tools for supporting control interventions will be realized fully only if researchers address the current uncertainties and gaps in data and knowledge of filarial population dynamics and the effectiveness of currently proposed filariasis intervention options.  相似文献   

6.
Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed.  相似文献   

7.
Parasitic helminth infections are characterized by eosinophilia and markedly elevated levels of circulating antigen-nonspecific immunoglobulin E (IgE), responses from which concern helminth protection. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in mice and rats. Recombinant DiAg (rDiAg) has various biological activities. It is also known that parasitic helminth infection generates tremendous Th2 responses. The nonobese diabetic (NOD) mouse spontaneously develops Th1 cell-dependent autoimmune diabetes. Here we investigated the effects of rDiAg on the initiation and progression of this disease. rDiAg treatment of 6-week-old NOD females (the age at which insulitis typically begins) completely prevented insulitis and diabetes. Thus, rDiAg impaired the islet Ag-specific Th1 cell response in vivo, and the prevention of diabetes by rDiAg was associated with switching of the response from a Th1 to a Th2 profile. Since rDiAg clearly prevented insulitis by inhibiting the development and further accumulation of pathogenic Th1 cells to islets of Langerhans, we conclude that DiAg is a native Th2 inducer in filarial helminth and that Th1 responses are required for early events in the development of spontaneous autoimmune diabetes. In conclusion, the presence of parasitic helminth infections may play an important role as an immunomodulator in some autoimmune diseases or allergies.  相似文献   

8.
Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches.  相似文献   

9.
A disproportionate burden of helminthiases in human populations occurs in marginalised, low-income, and resource-constrained regions of the world, with over 1 billion people in developing areas of sub-Saharan Africa, Asia, and the Americas infected with one or more helminth species. The morbidity caused by such infections imposes a substantial burden of disease, contributing to a vicious circle of infection, poverty, decreased productivity, and inadequate socioeconomic development. Furthermore, helminth infection accentuates the morbidity of malaria and HIV/AIDS, and impairs vaccine efficacy. Polyparasitism is the norm in these populations, and infections tend to be persistent. Hence, there is a great need to reduce morbidity caused by helminth infections. However, major deficiencies exist in diagnostics and interventions, including vector control, drugs, and vaccines. Overcoming these deficiencies is hampered by major gaps in knowledge of helminth biology and transmission dynamics, platforms from which to help develop such tools. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, we provide an overview of the forces driving the persistence of helminthiases as a public health problem despite the many control initiatives that have been put in place; identify the main obstacles that impede progress towards their control and elimination; and discuss recent advances, opportunities, and challenges for the understanding of the biology, epidemiology, and control of these infections. The helminth infections that will be discussed include: onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, food-borne trematodiases, and taeniasis/cysticercosis.  相似文献   

10.

Background  

More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure.  相似文献   

11.
Infection with helminth parasites affects more than 1.5 billion people and is concentrated in global areas of extreme poverty, having a significant impact on public health, social life and the economy. Upon entry into the host, helminth parasites often migrate through specific tissues triggering host immunity. The immune response triggered by helminth infections is complex and depends on parasite load, site of infection, acuteness/chronicity of the infection and is species-dependent. In general, susceptibility or resistance to the infection involves the participation of the innate immune response and then the balance between several effector CD4+ T cells subsets, such as Th1, Th2, Th9, Th17, Tfh and Treg, coordinated by immune mediators such as cytokines and chemokines. Chemokines guide the recruitment and activation of leukocytes under inflammatory and homeostatic states. The chemokine system has been associated with several diseases and experimental models with a significant inflammatory component, including infection with helminth parasites. Therefore, this critical review will highlight the main findings concerning chemokine responses elicited by the interaction between helminth parasites and the hosts’ immune system, hence contributing to the understanding of the relevance of chemokine synthesis and biology in the immunological response to infection by parasitic helminths.  相似文献   

12.
Wild ruminants are susceptible to infection from generalist helminth species, which can also infect domestic ruminants. A better understanding is required of the conditions under which wild ruminants can act as a source of helminths (including anthelmintic-resistant genotypes) for domestic ruminants, and vice versa, with the added possibility that wildlife could act as refugia for drug-susceptible genotypes and hence buffer the spread and development of resistance. Helminth infections cause significant productivity losses in domestic ruminants and a growing resistance to all classes of anthelmintic drug escalates concerns around helminth infection in the livestock industry. Previous research demonstrates that drug-resistant strains of the pathogenic nematode Haemonchus contortus can be transmitted between wild and domestic ruminants, and that gastro-intestinal nematode infections are more intense in wild ruminants within areas of high livestock density. In this article, the factors likely to influence the role of wild ruminants in helminth infections and anthelmintic resistance in livestock are considered, including host population movement across heterogeneous landscapes, and the effects of climate and environment on parasite dynamics. Methods of predicting and validating suspected drivers of helminth transmission in this context are considered based on advances in predictive modelling and molecular tools.  相似文献   

13.
It has been shown that the presence of certain helminth infections in humans, including schistosomes, may reduce the propensity to develop allergies in infected populations. Using a mouse model of schistosome worm vs worm + egg infection, our objective was to dissect the mechanisms underlying the inverse relationship between helminth infections and allergies. We have demonstrated that conventional Schistosoma mansoni egg-laying male and female worm infection of mice exacerbates airway hyperresponsiveness. In contrast, mice infected with only schistosome male worms, precluding egg production, were protected from OVA-induced airway hyperresponsiveness. Worm-infected mice developed a novel modified type 2 cytokine response in the lungs, with elevated allergen-specific IL-4 and IL-13 but reduced IL-5, and increased IL-10. Although schistosome worm-only infection is a laboratory model, these data illustrate the complexity of schistosome modulation of host immunity by the worm vs egg stages of this helminth, with the potential of infections to aggravate or suppress allergic pulmonary inflammation. Thus, infection of mice with a human parasitic worm can result in reduced airway inflammation in response to a model allergen.  相似文献   

14.
Hospital based studies were conducted to investigate the occurrence of Plasmodium/intestinal helminth co-infections among pregnant Nigerian women, and their effects on birthweights, anaemia and spleen size. From 2,104 near-term pregnant women examined, 816 (38.8%) were found to be infected with malaria parasites. Among the 816 parasitaemic subjects, 394 (48.3%) were also infected with intestinal helminths, 102 (12.5%) having mixed helminth infections. The prevalence of the helminth species found in stool samples of parasitaemic subjects examined was, Ascaris lumbricoides (19.1%), hookworm (14.2%), Trichuris trichiura (7%) Schistosoma mansoni (3.4%), Enterobius vermicularis (2%), Hymenolepis sp. (1.6%) and Taenia sp. (1%). Mothers with Plasmodium infection but without intestinal helminth infection had neonates of higher mean birthweights than those presenting both Plasmodium and intestinal helminth infections and this effect was more pronounced in primigravids. The mean haemoglobin values of malarial mothers with intestinal helminth infections were lower than those with Plasmodium infection but without intestinal helminth infections but these were not statistically significant. Severe splenomegaly was predominant among parasitaemic gravidae who also harboured S. mansoni infection in two of the hospitals studied.  相似文献   

15.
Both helminth infections and contact with allergens result in development of a Th2 type of immune response in the affected individual. In this context, the hygiene hypothesis suggests that reduced prevalence of parasitic infections and successful vaccination strategies are causative for an increase of allergies in industrialized countries. It is therefore of interest to study glycans and their role as immunogenic structures in both parasitic infections and allergies. In the present paper we review information on the different types of glycan structure present in proteins from plant and animal food, insect venom and helminth parasites, and their role as diagnostic markers. In addition, the application of these glycan structures as immunomodulators in novel immunotherapeutic strategies is discussed.  相似文献   

16.
The vertebrate immune system has evolved in concert with a broad range of infectious agents, including ubiquitous helminth (worm) parasites. The constant pressure of helminth infections has been a powerful force in shaping not only how immunity is initiated and maintained, but also how the body self-regulates and controls untoward immune responses to minimize overall harm. In this Review, we discuss recent advances in defining the immune cell types and molecules that are mobilized in response to helminth infection. Finally, we more broadly consider how these immunological players are blended and regulated in order to accommodate persistent infection or to mount a vigorous protective response and achieve sterile immunity.  相似文献   

17.
As a result of support from the Bill and Melinda Gates Foundation, schistosomiasis and intestinal or soil-transmitted helminth infections have been the subject of national control programmes in three Eastern and Southern African countries: Uganda, the United Republic of Tanzania and Zambia. Here, we review the significant progress made in their control efforts and highlight the different approaches being adopted to ensure programme effectiveness and sustainability. Although a positive start has been made to reduce morbidity resulting from schistosomiasis and soil-transmitted helminth infections in these countries, it is imperative that support is identified to sustain the programmes until these infections are no longer a public health problem and children can therefore be given a healthy start to life.  相似文献   

18.
Heligmosomoides polygyrus (formerly known as Nematospiroides dubius, and also referred to by some as H. bakeri) is a gastrointestinal helminth that employs multiple immunomodulatory mechanisms to establish chronic infection in mice and closely resembles prevalent human helminth infections. H. polygyrus has been studied extensively in the field of helminth-derived immune regulation and has been found to potently suppress experimental models of allergy and autoimmunity (both with active infection and isolated secreted products). The protocol described in this paper outlines management of the H. polygyrus life cycle for consistent production of L3 larvae, recovery of adult parasites, and collection of their excretory-secretory products (HES).  相似文献   

19.
BackgroundPrevious reports show altered gut bacterial profiles are associated with helminth infected individuals. Our recently published molecular survey of clinical helminthiases in Thailand border regions demonstrated a more comprehensive picture of infection prevalence when Kato Katz microscopy and copro-qPCR diagnostics were combined. We revealed that Opisthorchis viverrini, hookworm, Ascaris lumbricoides and Trichuris trichiura were the most predominant helminth infections in these regions. In the current study, we have profiled the faecal and saliva microbiota of a subset of these helminth infected participants, in order to determine if microbial changes are associated with parasite infection.MethodsA subset of 66 faecal samples from Adisakwattana et al., (2020) were characterised for bacterial diversity using 16S rRNA gene profiling. Of these samples a subset of 24 participant matched saliva samples were also profiled for microbiota diversity. Sequence data were compiled, OTUs assigned, and diversity and abundance analysed using the statistical software Calypso.ResultsThe data reported here indicate that helminth infections impact on both the host gut and oral microbiota. The profiles of faecal and saliva samples, irrespective of the infection status, were considerably different from each other, with more alpha diversity associated with saliva (p-value≤ 0.0015). Helminth infection influenced the faecal microbiota with respect to specific taxa, but not overall microbial alpha diversity. Conversely, helminth infection was associated with increased saliva microbiota alpha diversity (Chao 1 diversity indices) at both the genus (p-value = 0.042) and phylum (p-value = 0.026) taxa levels, compared to uninfected individuals. Elevated individual taxa in infected individuals saliva were noted at the genus and family levels. Since Opisthorchis viverrini infections as a prominent health concern to Thailand, this pathogen was examined separately to other helminths infections present. Individuals with an O. viverrini mono-infection displayed both increases and decreases in genera present in their faecal microbiota, while increases in three families and one order were also observed in these samples.DiscussionIn this study, helminth infections appear to alter the abundance of specific faecal bacterial taxa, but do not impact on overall bacterial alpha or beta diversity. In addition, the faecal microbiota of O. viverrini only infected individuals differed from that of other helminth single and dual infections. Saliva microbiota analyses of individuals harbouring active helminth infections presented increased levels of both bacterial alpha diversity and abundance of individual taxa. Our data demonstrate that microbial change is associated with helminthiases in endemic regions of Thailand, and that this is reflected in both faecal and saliva microbiota. To our knowledge, this is the first report of an altered saliva microbiota in helminth infected individuals. This work may provide new avenues for improved diagnostics; and an enhanced understanding of both helminth infection pathology and the interplay between helminths, bacteria and their host.  相似文献   

20.
The general solution of the mathematical model of herd immunity to human helminth infections recently proposed by Anderson and May [3] is obtained. The numerical solution of a more accurate biological model is indistinguishable from the corresponding exact solution of a more tractable mathematical model. Computer simulations of some particular cases of this model support the notion that both ecological and immunological factors determine the observed convex patterns of age-prevalence and age-intensity curves of human helminth infections.This work was made thanks to the advise and support of Dr. Robert M. May while the author was Postdoctoral Fellow at Princeton University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号