首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Weak protein-protein interactions (PPIs) are fundamental to many cellular processes, such as reversible cell-cell contact, rapid enzyme turnover and transient assembly and/or reassembly of large signaling complexes. However, structural and functional characterizations of weak PPIs have been technically challenging and lagged behind those for strong PPIs. Here, we describe nuclear magnetic resonance (NMR) spectroscopy as a highly effective tool for unraveling the atomic details of weak PPIs. We highlight the recent advances of how NMR can be used to rapidly detect and structurally determine extremely weak PPIs (K(d)>10(-4)M). Coupled with functional approaches, NMR has the potential to look into a wide variety of biologically important weak PPIs at the detailed molecular level, thereby facilitating a thorough view of how proteins function in living cells.  相似文献   

2.
Araç D  Murphy T  Rizo J 《Biochemistry》2003,42(10):2774-2780
Two methods for detecting protein-protein interactions in solution using one-dimensional (1D) NMR spectroscopy are described. Both methods rely on measurement of the intensity of the strongest methyl resonance (SMR), which for most proteins is observed at 0.8-0.9 ppm. The severe resonance overlap in this region facilitates detection of the SMR at low micromolar and even sub-micromolar protein concentrations. A decreased SMR intensity in the 1H NMR spectrum of a protein mixture compared to the added SMR intensities of the isolated proteins reports that the proteins interact (SMR method). Decreased SMR intensities in 1D 13C-edited 1H NMR spectra of 13C-labeled proteins upon addition of unlabeled proteins or macromolecules also demonstrate binding (SMRC method). Analysis of the interaction between XIAP and Smac, two proteins involved in apoptosis, illustrates both methods. A study showing that phospholipids compete with the neuronal core complex for Ca2+-dependent binding to the presynaptic Ca2+-sensor synaptotagmin 1 illustrates the usefulness of the SMRC method in studying multicomponent systems.  相似文献   

3.
Mapping protein-protein interactions by mass spectrometry   总被引:1,自引:0,他引:1  
Mass spectrometry is currently at the forefront of technologies for mapping protein-protein interactions, as it is a highly sensitive technique that enables the rapid identification of proteins from a variety of biological samples. When used in combination with affinity purification and/or chemical cross-linking, whole or targeted protein interaction networks can be elucidated. Several methods have recently been introduced that display increased specificity and a reduced occurrence of false-positives. In the future, information gained from human protein interaction studies could lead to the discovery of novel pathway associations and therapeutic targets.  相似文献   

4.
5.
6.
The kinetics for the binding of coenzymes to H4 and M4 lactate dehydrogenase from chicken were investigated by nuclear magnetic resonance spectroscopy. With detailed computer analysis, some kinetic parameters were extracted from the chemical shifts and the linewidth of the observed coenzyme resonances at various enzyme/coenzyme ratios and temperatures. The results of the analysis indicated that the dissociation rates of coenzymes from the enzyme/coenzyme complexes are slower with the H4 isozyme than those involving the M4 isozyme. The lifetimes for the NAD+-enzyme complexes are on the order of 1 msec while those for the NADH-enzyme complexes are on the order of 10 ms (at room temperature). Much shorter transverse relaxation times of the coenzyme resonances were observed in NADH-enzyme complexes than those in the NAD+-enzyme complexes. The calculated kinetic constants are in good agreement with the previous studies by stopped-flow and temperature jump methods. A generalized NMR kinetic treatment for the binding of small molecules to a macromolecule is presented.  相似文献   

7.
We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution.  相似文献   

8.
Strand discrimination in Escherichia coli DNA mismatch repair requires the activation of the endonuclease MutH by MutL. There is evidence that MutH binds to the N-terminal domain of MutL in an ATP-dependent manner; however, the interaction sites and the molecular mechanism of MutH activation have not yet been determined. We used a combination of site-directed mutagenesis and site-specific cross-linking to identify protein interaction sites between the proteins MutH and MutL. Unique cysteine residues were introduced in cysteine-free variants of MutH and MutL. The introduced cysteines were modified with the cross-linking reagent 4-maleimidobenzophenone. Photoactivation resulted in cross-links verified by mass spectrometry of some of the single cysteine variants to their respective Cys-free partner proteins. Moreover, we mapped the site of interaction by cross-linking different combinations of single cysteine MutH and MutL variants with thiol-specific homobifunctional cross-linkers of varying length. These results were used to model the MutH.MutL complex and to explain the ATP dependence of this interaction.  相似文献   

9.
Extremely diverse, DNA-encoded libraries of peptides and proteins have been constructed that include a linkage between each polypeptide and the encoding DNA. Library members can be selected by virtue of a particular binding specificity, and their protein sequence can be deduced from the sequence of the cognate DNA. Such combinatorial biology methods have proven invaluable in both identifying natural protein-protein interactions and also in mapping the specificities and energetics of these interactions in fine detail.  相似文献   

10.
Antibodies play an ever more prominent role in basic research as well as in the biotechnology and pharmaceutical sectors. Characterizing their epitopes, that is, the region that they recognize on their target molecule, is useful for purposes ranging from molecular biology research to vaccine design and intellectual property protection. Solution NMR spectroscopy is ideally suited to the atomic level characterization of intermolecular interfaces and, as a consequence, to epitope discovery. Here, we illustrate how NMR epitope mapping can be used to rapidly and accurately determine protein antigen epitopes. The basic concept is that differences in the NMR signal of an antigen free or bound by an antibody will identify epitope residues. NMR epitope mapping provides more detailed information than mutagenesis or peptide mapping and can be much more rapid than X‐ray crystallography. Advantages and drawbacks of this technique are discussed together with practical considerations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Protein structure determination in solution by NMR spectroscopy   总被引:1,自引:0,他引:1  
The introduction of nuclear magnetic resonance (NMR) spectroscopy as a second method for protein structure determination at atomic resolution, in addition to x-ray diffraction in single crystals, has already led to a significant increase in the number of known protein structures. The NMR method provides data that are in many ways complementary to those obtained from x-ray crystallography and thus promises to widen our view of protein molecules, giving a clearer insight into the relation between structure and function.  相似文献   

12.
In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80.  相似文献   

13.
14.
We describe an in-cell NMR-based method for mapping the structural interactions (STINT-NMR) that underlie protein-protein complex formation. This method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring their interactions using in-cell NMR spectroscopy. The resulting NMR data provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution. Unlike the case where interacting proteins are simultaneously overexpressed in the labeled medium, in STINT-NMR the spectral complexity is minimized because only the target protein is labeled with NMR-active nuclei, which leaves the interactor protein(s) cryptic. This method can be combined with genetic and molecular screens to provide a structural foundation for proteomic studies. The protocol takes 4 d from the initial transformation of the bacterial cells to the acquisition of the NMR spectra.  相似文献   

15.
Hass MA  Jensen MR  Led JJ 《Proteins》2008,72(1):333-343
Electric fields generated in native proteins affect almost every aspect of protein function. We present a method that probes changes in the electric field at specific locations within a protein. The method utilizes the dependence of the amide (1)H and (15)N NMR chemical shifts on electric charges in proteins. Charges were introduced at different positions in the blue copper protein plastocyanin, by protonation of side chains or by substitution of the metal ion. It is found that the associated chemical shift perturbations (CSPs) stem mainly from long-range electric field effects caused by the change in the electric charge. It is demonstrated that the CSPs can be used to estimate the dielectric constant at different locations in the protein, estimate the nuclear shielding polarizability, or position charges in proteins.  相似文献   

16.
The structural characterization of peptide hormones and their interaction with G-protein (guanine nucleotide-binding regulatory protein) coupled receptors by high-resolution nmr is described. The general approaches utilized can be categorized into three different classes based on their target: the ligand, the receptor, and the ligand/receptor complex. Examples of these different approaches, aimed at facilitating the rational design of peptides and peptidomimetics with improved pharmacological profiles, based on work carried out in our own laboratory, are given. In the ligand-based approach, the high-resolution structures of bradykinin analogues allowing for the development of a structure-activity relationship for activation of the B1 receptor are described. Studies targeting the receptor are to a large extent theoretical, based on computational molecular modeling. However, experimentally based structural features provided by high-resolution nmr can be used to great advantage, providing insight into the mechanism of receptor function, as illustrated here with results from parathyroid hormone. A similar combination of theoretical methods, supplemented by high-resolution structures from nmr has been utilized to probe the formation and stabilization of the ligand/receptor complex both for parathyroid hormone and cholecystokinin. In each of these three approaches, the importance of well-designed peptide mimetics and accurate structural analysis by high-resolution nmr, will be highlighted.  相似文献   

17.
Iron is an essential nutrient for the proliferation of Staphylococcus aureus during bacterial infections. The iron-regulated surface determinant (Isd) system of S. aureus transports and metabolizes iron porphyrin (heme) captured from the host organism. Transportation of heme across the thick cell wall of this bacterium requires multiple relay points. The mechanism by which heme is physically transferred between Isd transporters is largely unknown because of the transient nature of the interactions involved. Herein, we show that the IsdC transporter not only passes heme ligand to another class of Isd transporter, as previously known, but can also perform self-transfer reactions. IsdA shows a similar ability. A genetically encoded photoreactive probe was used to survey the regions of IsdC involved in self-dimerization. We propose an updated model that explicitly considers self-transfer reactions to explain heme delivery across the cell wall. An analogous photo-cross-linking strategy was employed to map transient interactions between IsdC and IsdE transporters. These experiments identified a key structural element involved in the rapid and specific transfer of heme from IsdC to IsdE. The resulting structural model was validated with a chimeric version of the homologous transporter IsdA. Overall, our results show that the ultra-weak interactions between Isd transporters are governed by bona fide protein structural motifs.  相似文献   

18.
The coat protein of the RNA bacteriophage MS2 is a translational repressor and interacts with a specific RNA stem-loop to inhibit translation of the viral replicase gene. As part of an effort to dissect genetically its RNA binding function, mutations were identified in the coat protein sequence that suppress mutational defects in the translational operator. Each of the mutants displayed a super-repressor phenotype, repressing translation from the wild-type and a variety of mutant operators better than did the wild-type coat protein. At least one mutant probably binds RNA more tightly than wild-type. The other mutants, however, were defective for assembly of virus-like particles, and self-associated predominantly as dimers. It is proposed that this assembly defect accounts for their super-repressor characteristics, since failure to assemble into virus-like particles elevates the effective concentration of repressor dimers. This hypothesis is supported by the observation that deletion of thirteen amino acids known to be important for assembly of dimers into capsids also resulted in the same assembly defect and in super-repressor activity. A second class of assembly defects is also described. Deletion of two amino acids from the C-terminus of coat protein resulted in failure to form capsids, most of the coat protein having the apparent molecular weight expected of trimers. This mutant (dl-8) was completely defective for repressor activity, probably because of an inability to form dimers. These results point out the inter-dependence of the structural and regulatory functions of coat protein.  相似文献   

19.
The three-dimensional solution structure of apo-neocarzinostatin has been resolved from nuclear magnetic resonance spectroscopy data. Up to 1034 constraints were used to generate an initial set of 45 structures using a distance geometry algorithm (DSPACE). From this set, ten structures were subjected to refinement by restrained energy minimization and molecular dynamics. The average atomic root mean square deviations between the final ten structures and the mean structure obtained by averaging their coordinates run from 0.085 nm for the best defined beta-sheet regions of the protein to 0.227 nm for the side chains of the most flexible loops. The solution structure of apo-neocarzinostatin is closely similar to that of the related proteins, macromomycin and actinoxanthin. It contains a seven-stranded antiparallel beta-barrel which forms, together with two external loops, a deep cavity that is the chromophore binding site. It is noteworthy that aromatic side chains extend into the binding cleft. They may be responsible for the stabilization of the holo-protein complex and for the chromophore specificity within the antitumoral family.  相似文献   

20.
New strategies and technical advances in NMR spectroscopy and biochemical methods for isotope labeling have enabled solution NMR studies of biomacromolecular systems of 100 kDa and larger. Recent progress has been made, in particular, with techniques for sequential resonance assignments, novel approaches for the direct observation of hydrogen bonds in nucleic acids and proteins, and segmental isotope labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号