首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The induction of estrus in 17 previously cycling nulliparous ewes, 9 to 10 months of age, was attempted with Medroxyprogesterone acetate (MAP) pessaries during the early anestrous period (March-April). Ewes were verified to be anestrous by the lack of estrous behavior in the presence of a vasectomized ram and by a radioimmunoassay for serum progesterone in two samples taken 7 days apart showing less than 1 ng/ml serum progesterone. Superovulation was attempted with injections of either FSH or FSH + LH. MAP vaginal pessaries remained in place for a period of 12 days and FSH was administered to all ewes (IM) at 12 hr intervals over a 3 day period; 5 mg was injected twice on day 11 after pessary insertion, followed by 4 and 3 mg injections twice daily on each succeeding day, for a total of 24 mg per ewe. Nine ewes were given 25 mg LH (IV) within 8 hrs after the onset of behavioral estrus in addition to FSH. Ewes were hand-mated to several rams at 12 hr intervals throughout the estrus period. Ovulation and fertilization rates were recorded for each ewe following midline laparotomy and embryo collection. All ewes were in estrus between 36 and 48 hrs after removal of the MAP pessaries. In ewes injected with FSH only, 8 of 8 ovulated with a mean ovulation rate of 6.0 +/- 4.4 and a fertilization rate of 70%. Nine of 9 ewes receiving both FSH + LH ovulated with a mean ovulation rate of 13.9 +/- 13.1 and a fertilization rate of 72%. Statistical analysis by Students t-test resulted in differences in number of ova recovered (P<.05) between FSH only and FSH + LH treated ewes and a trend towards increased ovulation rate in FSH + LH treated ewes. These results show that early seasonally anestrous ewes can be successfully induced and synchronized for estrus with MAP pessaries and the number of ova recovered is increased with the inclusion of LH in the superovulation regime.  相似文献   

2.
Stress-like concentrations of cortisol increase the negative feedback potency of oestradiol in castrated male sheep. A similar cortisol-dependent response in female sheep might be expected to suppress gonadotrophin secretion and impair follicular development and ovulation. The oestrous activity of 21 female sheep was synchronized using progestogen-treated vaginal pessaries to test this hypothesis. Stress-like concentrations of cortisol (60-70 ng ml-1) were established by continuous infusion of cortisol (80 micrograms kg-1 h-1; n = 13) beginning 5 days before, and continuing for 5 days after, pessary removal. Control animals (n = 8) received a comparable volume of vehicle (50% ethanol-saline) over the 10 day infusion period. Serum concentrations of oestradiol increased progressively in control sheep during the 48 h immediately after pessary removal. This increase in serum oestradiol was blocked or significantly attenuated in sheep receiving stress-like concentrations of cortisol. Preovulatory surge-like secretion of LH was apparent in control animals 58.5 +/- 2.1 h after pessary removal. In contrast, surge-like secretion of LH was not observed during the 5 days after pessary removal in 54% (7 of 13) of sheep receiving cortisol. Moreover, the onset of the surge was significantly delayed in the cortisol-treated ewes that showed surge-like secretion of LH during the infusion period. The ability of episodic pulses of exogenous GnRH to override the anti-gonadal effect of cortisol was examined in a second study. Oestrous activity of 12 ewes was synchronized using progestogen-containing pessaries as described above. Ewes were randomly assigned to one of three treatment groups (n = 4 ewes per group). Animals received cortisol (100 micrograms kg-1 h-1; groups 1 and 2) or a comparable volume of vehicle (group 3) beginning 5 days before, and continuing for 2 days after, pessary removal. Pulses of GnRH (4 ng kg-1 h-1, i.v.; group 1) or saline (groups 2 and 3) at 1 h intervals were initiated at pessary removal and continued for 48 h. Serum concentrations of oestradiol were not significantly increased after pessary removal in sheep receiving cortisol alone. Conversely, serum concentrations of oestradiol increased progressively during the 48 h after pessary removal in control ewes and in ewes receiving cortisol and GnRH. At the end of infusion, serum concentrations of oestradiol did not differ (P > 0.05) between control (7.7 +/- 0.8 pg ml-1) ewes and ewes receiving cortisol and episodic GnRH (6.4 +/- 1.3 pg ml-1). Moreover, these values were significantly greater (P < 0.05) than the serum concentrations of oestradiol in animals receiving cortisol (1.0 +/- 0.4 pg ml-1) alone. Collectively, these data indicate stress-like concentrations of cortisol block or delay follicular development and the preovulatory surge of LH in sheep. In addition, episodic GnRH overrides cortisol-induced delay in follicular maturation.  相似文献   

3.
Two experiments were conducted to examine the effects of ram exposure during the breeding season, in combination with progestagen treatment on estrus synchronization, fertility the LH surge and ovulation in ewes. Experiment 1 was subdivided into experiments 1a and 1b. In all experiments cross-bred ewes were treated with an intravaginal sponge for 12-14 days and three days before sponge withdrawal ewes were divided into control (no further treatment; n=191, 103 and 50 for experiments 1a, 1b and 2, respectively) or ram exposed (three mature rams per 50 ewes were introduced; +Ram; n=187, 99 and 49 for experiments 1a, 1b and 2, respectively). At sponge withdrawal ewes in Experiments 1a and 2 received 500 IU eCG and rams were removed from all the +Ram groups. In Experiments 1a and 1b, raddled, entire rams were introduced to ewes 48 h after sponge withdrawal. The timing of mating was recorded and ewes were maintained until lambing. In Experiment 2, estrus behavior was determined every 4 h and the time of the LH surge and ovulation were determined from a subset of 10 ewes per group. In Experiment 1a, less +Ram ewes were bred by 48 h after ram introduction (control 98% versus +Ram 89%, P<0.001) and in Experiments 1a and 1b 14% fewer (P<0.05) of the ewes bred in the first 3 h after ram introduction lambed to that service. In Experiment 1a, ram exposed ewes had a lower litter size than control ewes (1.93+/-0.06 versus 1.70+/-0.06 lambs per ewe; P<0.05). In Experiment 2, rams advanced (P<0.05) estrus, the LH surge and ovulation by 2-6 h compared with control ewes. We speculate that exposure of ewes to rams increased LH secretion and that this in turn increased follicle development and the production of oestradiol that led to a more rapid onset of estrus, the LH surge and ovulation compared to control ewes. Unexpectedly, ewes that were bred had lower fertility in the +Ram groups than control groups.  相似文献   

4.
In a study of the time of ovulation following synchronization of estrus in the ewe, the effect of time of treatment with GnRH (24 vs 36 h after pessary removal) and dosage (6.25 to 100 ug per ewe) were examined. All treatments synchronized the time of ovulation irrespective of when untreated ewes commenced to ovulate. As part of an evaluation of GnRH treatment in artificial insemination programs, an assessment was made of the quality of eggs obtained from control ewes and ewes treated with GnRH at either 24 or 36 h after pessary removal. Treatment at 24 h increased the number of retarded embryos (P < 0.01) and unfertilized ova (P < 0.01) collected per ewe, reduced the number of embryos collected per ewe (P < 0.01), and reduced (P < 0.05) the percentage of pregnant ewes compared with other groups. However, there were no differences between control ewes and ewes treated with GnRH at 36 h. GnRH treatment at 36 h was consequently examined as a means of improving conception rates following the intrauterine insemination of frozen-thawed semen. Insemination of GnRH-treated ewes 8 to 12 h before the median time of ovulation resulted in a nonsignificant increase (range 5.7 to 7.3%) in the percentage of ewes of mature age which became pregnant. Insemination 0 to 4 h before the median time of ovulation resulted in a nonsignificant decrease in the percentage of pregnant ewes. GnRH treatment did not influence the number of fetuses per ewe. Reasons for the failure of this treatment to significantly improve ewe fertility are discussed.  相似文献   

5.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

6.
The objective of this study was to evaluate the efficacy of combinations of PMSG treatment and ram contact on the reproductive performance of progestagen-treated ewes during three different times of the year, Febraury (early anestrus), July (late anestrus) and October (breeding season). A total of 109 multiparous Dorset ewes was used. Ewes were treated with intravaginal progestagen pessaries for 12 days, injected with 500 IU PMSG at pessary removal and either isolated from rams prior to mating (n = 12, February; n = 12, July; n = 8, October) or exposed to rams during pessary treatment (n = 17, February; n = 12, July; n = 8, October). A third treatment group (n = 18, February; n = 6, July; n = 8, October) received pessaries and ram exposure but no PMSG. An additional treatment of progestagen pessaries alone was included in October (n = 8). There were no differences among treatments in their ability to induce estrus at different times of the year, but incidence of estrus tended (P < 0.10) to be lower for PMSG treatment during the July breeding. During February, the use of pessaries with PMSG treatment increased (P < 0.05) conception and lambing rates, whereas ram contact was without any beneficial effects. The trend was reversed during July breeding, when ram contact increased (P < 0.05) fertility of progestagen-treated ewes compared with other treatment combinations. Pessaries alone were sufficient to attain acceptable levels of fertility and fecundity in October.  相似文献   

7.
The duration of oestrus and the time interval from removal of progestagen-impregnated pessaries to the onset and end of oestrus were examined in Texel, Finnish Landrace, Galway and Fingalway (Finnish Landrace X Galway) ewes. The differences among the breeds in the relationship between these variables and ovulation rate at the controlled oestrus were also investigated. Breed differences were significant for all traits except the interval from pessary withdrawal to the onset of oestrus. The relationship between ovulation rate and both the interval from pessary withdrawal to the onset of oestrus and the duration of oestrus differed significantly among the breeds. The repeatability of the duration of oestrus was significant for Texel and Rambouillet ewes (mean = 0.5) and for pooled data from ewe lambs of various breeds. It was concluded that, in view of the breed differences in the relationship between ovulation rate and duration of oestrus and other traits, generalizations should not be made from among-breed to within-breed relationships. The high repeatability for the duration of oestrus may mean substantial heritabilities for the physiological determinants of oestrus duration.  相似文献   

8.
Observations were made by repeated laparoscopy to determine the time of ovulation in seven flocks of South Australian Merino ewes treated with pregnant mare serum gonadotropin (PMSG, 400 IU per ewe) and an intravaginal pessary containing 60 mg medroxy-progesterone acetate (MAP). Ovulation most often commenced within 57 h of pessary removal and was completed in all flocks within 81 h. There was, however, significant variation in the time of onset of ovulation; it did not commence until 69 h in one of three observations of Flock 1 and in two of three observations of Flock 2. On the other hand, in a flock of two-year-old nulliparous ewes (Flock 7), ovulation commenced significantly (P < 0.001) earlier than in most observations of other flocks, with 18 39 ewes ovulating within 57 h of pessary removal. The effect of the progestagen (MAP vs flugestone acetate) and the gonadotropin preparation (Pregnecol vs Folligon) on the time of ovulation were observed in separate studies. The characteristic time of ovulation was not influenced in either comparison. However, ovulation occurred significantly (P < 0.001) earlier in ewes treated with progesterone released from a controlled internal drug release dispenser (CIDR). The implications of these findings to artificial insemination and embryo transfer are discussed.  相似文献   

9.
Two experiments were conducted to examine the effect of progestagen supplement 24h prior to intravaginal pessary withdrawal on reproductive performance of seasonal anestrous ewes. Ewes in each experiment were allocated to treatment and control and all were induced to estrus using either intravaginal MAP (Exp. 1; n=24) or CIDR-G (Exp. 2; n=28) pessaries for 12 days. Half of the ewes in each experiment were supplemented 24h before withdrawal of pessaries with either 10mg oral MAP tablets (Exp. 1) or 25mg i.m. progesterone (P(4)) administration (Exp. 2; P(4)-supplement-treated group). Fertile rams were allowed with the ewes at sponge removal (Day 0, 0h) and estrus was monitored at 6-h intervals for 3 days. Blood samples were collected for measurements of P(4) (Exp. 1 and Exp. 2) and LH (Exp. 2). In both experiments, the percent of ewes in estrus was greater (P<0.05) and intervals to estrus were longer (P<0.05) in progestagen-supplement-treated than control ewes. In Exp. 2, the occurrence and magnitude of LH surges were greater (P<0.01) and intervals to onset of LH surge were longer (P<0.01) in P(4)-supplement-treated than control ewes. In Exp. 2, P(4) supplement elevated P(4) levels from 1.8+/-0.1ng/mL on Day -1 to 4.2+/-0.3 on Day 0 (P<0.001). Following pessaries removal, P(4) concentrations fell to basal values on Day 1 in both groups and remained low until Day 5. Then, P(4) concentrations increased and remained elevated through Day 19 in all (100%) progestagen-supplement-treated in Exp. 1 (12/12) and Exp. 2 (14/14) and in only 5/12 (41.7%) and 6/14 (42.9%) control ewes, respectively. These ewes were confirmed pregnant by ultrasonography and lambed on Day 149.2+/-0.2 following Day 0. In conclusion, progestagen supplement 24h prior to removal of pessary can be used successfully to improve reproductive performance of ewes bred out-of-season.  相似文献   

10.
Hair sheep ewes (St. Croix White and Barbados Blackbelly) were used to evaluate 3 methods of estrus synchronization for use with transcervical artificial insemination (TAI). To synchronize estrus, ewes (n = 18) were treated with PGF2alpha (15 mg, im) 10 d apart, with controlled internal drug release (CIDR) devices containing 300 mg progesterone for 12 d (n = 18), or with intravaginal sponges containing 500 mg progesterone for 12 d (n = 18). On the day of the second PGF2alpha injection or at CIDR or sponge removal, sterile rams were placed with the ewes. Jugular blood samples were collected from the ewes at 6-h intervals until the time of ovulation, and daily for 16 d after estrus (Day 0). Plasma was harvested and stored at -20 degrees C until LH, and progesterone concentrations were determined by RIA. There was no difference (P>0.10) in time to estrus among the CIDR-, PGF2alpha- or sponge-treated ewes. All of the ewes in the CIDR group and 94.4% of the sponge treated ewes exhibited estrus by 36 h after ram introduction, while only 72.2% of PGF2alpha-treated ewes showed signs of estrus by this time (P<0.06). The time from ram introduction to ovulation was not different (P>0.10) among the CIDR-, PGF2alpha- or sponge-treated ewes. The time to the preovulatory LH surge was similar (P>0.10) among CIDR, PGF2alpha and sponge treated ewes. Progesterone levels through Day 16 after the synchronized estrus were not different (P>0.10) among treatment groups. Hair sheep ewes (n = 23) were synchronized using PGF2alpha and bred by TAI using frozen-thawed semen 48 h after the second injection. The conception rate to TAI was 2/23 (8.7%) and produced 3 ram lambs. In a subsequent trial, 17 ewes were synchronized with CIDR devices and bred by TAI using frozen-thawed semen 48 h after CIDR removal, resulting in a conception rate of 52.9% (9/17). It is possible to synchronize estrus in hair sheep using either CIDRs, sponges or PGF2alpha. Even though there were no significant differences in the timing of ovulation or the LH surge among the treatment groups, a higher conception rate was achieved in ewes synchronized with CIDR devices during the second trial. This may reflect an increase in the skill level of the TAI technician.  相似文献   

11.
The mean duration of oestrus, ovulation rate, duration of the preovulatory LH discharge, time interval between sponge removal and beginning of the LH discharge, total LH discharged, maximum LH value observed and the concentration of progesterone in the peripheral plasma during the luteal phase of the oestrous cycle was similar in Galway adult ewes and 8-month-old ewe lambs after treatment with intravaginal sponges containing 30 mg cronolone for 12 days and injection of 500 i.u. PMSG. The interval between sponge removal and the onset of oestrus was shorter for adults than for ewe lambs; the interval between the onset of oestrus and the beginning of the LH discharge was longer in adults. During the period 12-36 h after sponge removal the mean plasma total oestrogen concentration was significantly higher in lambs than in adults. In a separate study of the time of ovulation in Galway ewe lambs given the same progestagen-PMSG treatment, ovulation did not occur in any lamb before 17 h after the onset of oestrus and the majority ovulated close to the end of oestrus.  相似文献   

12.
Hair sheep ewes were used to evaluate the influence of various levels of mating stimuli on the duration and timing of estrus and LH concentrations around estrus. Ewes were treated with PGF2alpha (15 mg, im) 10 d apart. At the time of the second PGF2alpha treatment (Day 0) ewes were placed in groups and exposed to different types of mating stimuli. One group of ewes (n = 16) was exposed to an epididymectomized ram (RAM), a second group of ewes (n = 16) was exposed to an epididymectomized ram wearing an apron to prevent intromission (APRON) and a third group of ewes (n = 17) was exposed to an androgenized ovariectomized ewe (T-EWE). Jugular blood samples were collected from ewes at 6-h intervals through Day 5. Plasma was harvested and LH concentration was determined by RIA. The ewes were observed at 6-h intervals to detect estrus. A ewe was considered to be out of estrus when she no longer stood to be mounted by the teaser animal. There was no difference (P > 0.10) in the proportion of ewes expressing estrus (79.6%) or having an LH surge (85.7%) among the treatments. Neither the time to estrus nor the duration of estrus were different (P > 0.10) among APRON, RAM or T-EWE groups (41.6+/-3.8 vs 43.6+/-3.6 vs 46.1+/-3.6 h, respectively, and 26.5+/-2.2 vs 24.8+/-2.3 vs 30.5+/-2.2 h, respectively). The time to LH surge was similar (P > 0.10) among APRON, RAM and T-EWE groups (51.2+/-4.5 vs 51.2+/-4.7 vs 52.7+/-4.5 h, respectively). The magnitude of the LH surge was similar (P > 0.10) in the T-EWE, APRON and RAM ewes (99.7+/-4.9 vs 87.2+/-4.9 vs 85.8+/-5.0 ng/mL, respectively). The time from estrus to the LH surge was not different (P > 0.10) among APRON, RAM or T-EWE ewes (10.1+/-2.2 vs 9.8+/-2.3 vs 11.6+/-2.3 h, respectively). These results show that the expression and duration of estrus are not influenced by different types of mating stimuli in hair sheep ewes. In addition, the timing and the magnitude of LH release does not appear to be influenced by mating stimuli around the time of estrus.  相似文献   

13.
The ability of ram introduction (RI) and progesterone pre-treatment to induce increases in LH secretion and ovulation, and the ability of progesterone pre-treatment with or without estrogen to induce estrus and ovulation in fall-born ewe lambs during seasonal anestrus was investigated. In early July, lambs of mixed breeds (41.8+/-0.6 kg and 250.7+/-1.3 days of age) were assigned to receive no treatment (C, n=7), to be introduced to rams (7:1 ewe:ram ratio; R, n=7), to be treated with progesterone (a used CIDR device) for 5 days (P, n=5), to be treated with progesterone and introduced to rams at CIDR removal (PR, n=11), or to receive the latter treatment plus an injection of estradiol benzoate (25 microg, E2beta i.m.) 24 h after CIDR withdrawal/RI (PER, n=11). Blood samples were collected from all lambs every 4h for 60 h beginning at RI/CIDR withdrawal (0 h), to characterize the LH surge profile and in groups R and C every 15 min for 8 h between 12 and 20 h for determination of LH pulse frequencies. Ultrasonographic examinations of the ovaries were conducted at 0, 36 and 60 h. In ram-exposed groups lambs were also observed for raddle marks every 4h from 0 to 60 h. The LH pulse frequency (pulses/8 h) was higher in group R (P<0.01; 7.7+/- 0.5) than group C lambs (2.7+/- 0.8). More lambs in groups exposed to rams than in the C or P groups showed an LH surge (P<0.05; 0, 100, 0, 72.7 and 100%, for C, R, P, PR and PER groups, respectively). Time from RI/CIDR removal to initiation of the LH surge was greater in lambs in the PR (43.5+/- 3.8h) than in the R (32.6+/- 4.6h; P=0.08) or PER (33+/- 1.2h; P<0.01). Diameter of the largest follicle at 0 h (3.2+/- 0.2mm) was not different among groups. Growth rate of the largest follicle between 0 and 36 h was greater (P<0.05) in RI than in C or P groups. Diameter of the largest follicle at 36 h was larger (P<0.05) in lambs in R (5.6+/- 0.2mm) and PR (5.1+/- 0.5mm) than C (4.0+/- 0.6mm) or P (3.8+/- 0.4mm) groups, and in R than PER (4.3+/- 0.4mm) treatment groups. Only lambs in the RI groups ovulated. Among RI groups the percentage of lambs ovulating was greater in the R (P<0.05; 85.7%) than PR (33.3%) groups with an intermediate response observed in lambs in treatment group PER (71.4%). The estrous response in progesterone pre-treated groups was greater (P<0.05) in lambs also treated with estrogen (PER; 81.8%), than in lambs introduced to rams alone (PR; 45.5%). In conclusion, ram introduction by itself, but not progesterone treatment alone, induces increases in LH pulse frequency, follicular development, and ovulation in fall-born ewe lambs during seasonal anestrus, further, P4 pre-treatment and RI when combined with E2 results in a high estrous response.  相似文献   

14.
The pattern of GnRH-like stimuli capable of inducing follicular growth, ovulation, and luteal function was evaluated in ewes passively immunized against GnRH. The estrous cycles of 30 regularly cyclic sheep were synchronized using vaginal pessaries impregnated with a synthetic progestogen. Animals were passively immunized against GnRH (groups 2-5, n = 6) or the carrier protein, keyhole limpet hemocyanin (KLH; group 1, n = 6), at the time of pessary removal (PR). Circhoral delivery of saline (groups 1, 2, and 5) or low amplitude GnRH agonist (des-Gly10 GnRH ethylamide [100 ng/hourly pulse]; groups 3 and 4) was initiated at PR and continued for 3 (groups 4 and 5) or 12 days (groups 1-3). In groups 4 and 5, the amplitude of the GnRH-like stimulus was increased to 800 ng/hourly pulse (stimulus-shift) during the 24-h period beginning 72 h after PR. The amplitude of the hourly stimulus was adjusted to 100 ng/pulse 96 h after PR and continued at that level to Day 12. The endocrine changes associated with follicle growth and maturation (serum concentrations of estradiol [E2] above 10 pg/ml), ovulation (surge-like secretion of LH and FSH), and normal luteal function (serum concentrations of progesterone [P] above 2 ng/ml) were evident in ewes passively immunized against KLH (group 1). In this group, the preovulatory surge of gonadotropins was noted 48.7 +/- 1.2 h after PR. These endocrine events were blocked by passive immunization against GnRH (group 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mature nonlactating Altamurana ewes (n = 168) were synchronized in the seasonal anestrus period with FGA-impregnated intravaginal pessaries for 12 d. In Experiment 1, 48 ewes were divided into a 3 x 4 factorial design for anti-PMSG monoclonal antibody (AP) bioassay test. Concomitant injections of PMSG (1000, 1500, 2000 IU) and AP (0, 1, 2, 3 microl/IU PMSG) were given, and ovarian response was evaluated by laparoscopy. In Experiment 2, 120 ewes were divided into 8 experimental groups (n = 15 per group). The ewes treated with 1000 or 1500 IU PMSG at -24 h from sponge removal were given AP intravenously at 50 h after pessary withdrawal, 12 or 24 h after the onset of estrus, while the controls did not receive AP. Blood samples were collected from ewes (n = 6) treated with 1500 IU PMSG with or without anti-PMSG. Ovarian response and embryo production were evaluated on Day 7 after sponge removal upon laparotomy. It was found that 1 microl AP was effective in neutralizing 1 IU PMSG. No significant differences in serum concentrations of progesterone were observed among the groups of superovulated ewes. Estradiol-17 beta levels were reduced following AP treatment 12 h after the onset of estrus. At a lower dosage of superovulatory treatment (1000 IU PMSG), AP injected at 12 or 24 h after the onset of estrus significantly lowered large follicles (P < 0.01) and increased the rate of ovulation (P < 0.05). Moreover, embryo production showed a more than two-fold increase (P < 0.01) of viable embryos following AP injection at 12 or 24 h after the onset of estrus (3.2 to 3.3 vs 1.3, with vs without anti-PMSG). It is concluded that superovulatory treatment with 1000 IU PMSG plus AP administered at a fixed time after the onset of estrus may improve ovarian response and the yield of viable embryos in ewes.  相似文献   

16.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

17.
Our previous work indicates that ewe breed differences in fertility following cervical AI with frozen-thawed semen are due to failure of normal sperm transport and/or early embryo development. Here we examined differences in hormone concentrations about the time of ovulation among more (Finnish Landrace and Belclare) and less (Suffolk and Texel) fertile ewes after AI with frozen thawed semen. In Experiment 1, oestradiol concentrations were measured in samples collected frequently from 12h before to 18h after the LH surge and progesterone was measured in samples collected from 9 to 27h after the LH surge in Suffolk (n=24), Texel (n=20) and Finnish Landrace (n=27) ewes. In Experiment 2, oestradiol concentrations were measured in samples collected frequently from 24h before to 6h after the LH surge and progesterone was measured in samples collected from 6h to 6 days after the LH surge in Suffolk (n=35) and Belclare (n=30) ewes. In Experiment 1, there was an effect of breed, time and their interaction (P<0.001) on oestradiol concentrations between -12 and +6h but only breed differences at +12 and +18h (P<0.01). Progesterone concentrations increased over time (P<0.001) and the rate of increase was significantly greater in Finnish Landrace than in the other two breeds. In Experiment 2, oestradiol concentrations were unaffected by breed. There was an interaction between breed and time with the rate of increase of progesterone being greater in Belclare than Suffolk ewes (P<0.001). In conclusion, differences in hormone concentrations in the periovulatory period are not consistent with ewe breed differences in fertility; however, we have showed that progesterone concentrations rise earlier in the more prolific breeds and suggest that this may explain reported ewe breed differences in embryo development.  相似文献   

18.
Mature Suffolk ewes were either actively or passively immunized against the synthetic fragment of porcine inhibin alpha, pI alpha(1-30), to determine the effects on gonadotrophin secretion and ovulation rate. Thirteen control ewes were immunized against human serum albumin, 12 ewes were actively immunized against pI alpha(1-30) and 36 ewes were passively immunized with pI alpha(1-30) antiserum. Blood samples were collected at 4-h intervals for 72 h from oestrus-synchronized ewes following the withdrawal of the progestagen pessaries. Mean gonadotrophin concentrations measured during the oestrous cycle of control ewes, ewes actively immunized against pI alpha(1-30) and ewes passively immunized against pI alpha(1-30) were similar, but their secretory profiles differed. Serum concentrations of follicle-stimulating hormone (FSH) were highest in ewes which had received antiserum at the time of pessary withdrawal; FSH concentrations did not decrease during the follicular phase of the oestrous cycle in ewes given antiserum 24 h after pessary withdrawal. Subtle but significant increments in serum FSH concentrations were observed in all passively immunized ewes in which sampling commenced at the time of treatment. The amplitude of the preovulatory luteinizing hormone (LH) peak, but not of the FSH peak, and the postovulatory secondary rise in FSH were lower (P less than 0.05) in actively immunized ewes than in control ewes. The mean (+/- s.e.) ovulation rate for actively immunized ewes (6.6 +/- 1.0) was 3 times higher (P less than 0.05) than that for control ewes (2.0 +/- 0.2), but was unaffected by passive immunization (range, 1.8-2.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


20.
Two experiments were conducted to examine the effects of treating seasonally anoestrous ewes with melatonin before ram introduction on reproductive response, and on LH secretion in anoestrous ewes induced to ovulate by rams.In Experiment 1, a total of 667 ewes from three flocks involving Merino (Flock 1, N = 149), Merino entrefino (Flock 2, N = 325) and Rasa Aragonesa (Flock 3, N = 203) breeds were used. Within each flock, ewes isolated from rams since the previous lambing were assigned at random to receive melatonin implants of Regulin (75, 175 and 105 in Merino, Merino entrefino and Rasa Aragonesa flocks, respectively) or to serve as untreated controls (74 in Merino, 150 in Merino entrefino and 98 in Rasa Aragonesa flocks). Fertile rams were introduced into all flocks 5 weeks after implantation in March (Flocks 1 and 2) or April (Flock 3), and remained with the ewes for a 50 day mating period. Percentage of ewes with luteal activity at ram introduction did not differ between melatonin treated and control ewes in any flock. There were no significant differences in either the mean interval from ram introduction to lambing or the distribution of lambing. Implantation with melatonin resulted in an improvement of prolificacy in all three flocks, although this only reached statistical significance in the Merino flock (1.15 vs. 1.03 in treated and control ewes, respectively, P < 0.05). Fertility was increased significantly (P < 0.05) in the Merino entrefino flock (64.5% in treated vs. 51.3% in control ewes).In Experiment 2, two trials were undertaken utilizing a total of 63 ewes. Trial 1 involved 24 mature Manchega ewes and Trial 2 involved 39 Merino ewe lambs. Half of the animals in each trial received a Regulin implant on 28 February (Trial 1) or 12 March (Trial 2) and the remaining half acted as controls. Rams were introduced 5 weeks after implantation and remained with the ewes for a 25 day period. In both trials, anoestrous ewes at ram introduction were bled at 20 min intervals for 3 h before and 5 h after ram introduction and then at 3 h intervals over the next 24 h for assessment of plasma concentrations of LH. Secretion of LH before or following introduction of rams was not affected by melatonin. Both treated and control anoestrous ewes in each trial responded to introduction of rams with an increase in the frequency of the LH pulses (P < 0.05), but no significant changes were detected in pulse amplitude or mean levels of LH. A preovulatory surge of LH was detected between 8 and 26 h after ram introduction, but neither mean interval from ram introduction to the peak of LH surge, nor the magnitude of the LH peak, was influenced by melatonin treatment.Results from this study show that: (1) melatonin implants administered during early seasonal anoestrus have the potential to improve reproductive performance in Spanish breeds of sheep, but the response is conditioned by breed, management system and environmental factors; (2) melatonin did not modify the secretion of LH in anoestrous ewes induced to ovulate by the ram effect under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号