首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of amino acids and peptides by Streptococcus cremoris is mediated by different highly specific transport systems. The leucine transport system has a high affinity only for leucine, isoleucine, and valine and no affinity for leucyl-peptides. The transport system for leucyl-leucine is strongly inhibited by several dipeptides with hydrophobic, neutral, N-terminal amino acids but not by leucine. The leucyl-leucine transport system has a high affinity for dipeptides containing β-methyl groups in the side chain; the C terminus of the dipeptide affects the affinity to a much lower extent. Leucyl-leucine transport in whole cells was studied as a function of the internal pH at different external pH values in the presence and absence of nigericin. The internal pH was shown to be an important controlling factor in leucyl-leucine uptake, but the ΔpH was not involved as a driving force. At increasing external pH values, the affinity of the transport system for leucyl-leucine decreased. Uptake of leucyl-leucine was also studied in the presence of arsenate, which inhibited ATP synthesis by substrate-level phosphorylation. The rate of leucyl-leucine transport appeared to be dependent on the intracellular ATP concentrations. These results indicate that the energy for the leucyl-leucine transport is directly supplied by ATP.  相似文献   

2.
Cyanamide mediated syntheses under plausible primitive earth conditions   总被引:2,自引:0,他引:2  
The synthesis of palmitoylglycerols in good yields occurs when a solution of glycerol, ammonium palmitate, cyanamide and imidazole is dried and heated at ambient humidity at temperatures ranging from 60 degrees--100 degrees C for 16 h. Much less product is formed in the absence of either or both cyanamide or imidazole. This work suggests that acylglycerols could have been synthesized on the primitive Earth under plausible prebiotic conditions which were similar but not identical to those which have been shown to condense deoxynucleotides into oligodeoxynucleotides and amino acids into peptides.  相似文献   

3.
The capability of the cysteine proteases ficin, papain and clostripain to form peptide bonds in frozen aqueous solutions was investigated. Freezing the reaction mixture resulted in increased peptide yields in kinetically controlled coupling of Bz–Arg–OEt with various amino acid amides and dipeptides. Under these conditions, peptide yields increased up to 70% depending on the enzyme and the amino component used. Enzyme-catalysed peptide syntheses were carried out under optimized reaction conditions (temperature, amino component concentration and pH before freezing) using the condensation of Bz–Arg–OEt and H–Leu–NH2 as a model reaction.  相似文献   

4.
Summary Using a primitive Earth evaporating pond model, the synthesis of phosphatidylcholine was accomplished when a reaction mixture of choline chloride and disodium phosphatidate, in the presence of cyanamide and traccs of acid, was evaporated and heated at temperatures ranging from 25° to 100°C for 7 hours. Optimum yields of about 15% were obtained at 80°C. Phosphatidylcholine was identified by chromatographic, chemical and enzymatic degradation methods. On enzymatic hydrolysis with phospholipase A2 and phospholipase C, lysophosphatidylcholine and phosphorylcholine were formed, respectively. Alkaline hydrolysis gave glycerophosphorylcholine. The synthesis of phosphatidylcholine as the major compound was accompanied by the formation of lysophosphatidylcholine in smaller amounts. Cyanamide was found to be essential for the formation of phosphatidylcholine, and only traces of HCl, of the order of that required to convert the disodium phosphatidate to free phosphatidic acid were found necessary for the synthesis. This work suggests that phosphatidylcholine, which is an essential component of most biological membranes, could have been synthesized on the primitive Earth.  相似文献   

5.
Summary A new method of enzymatic peptide synthesis without any liquid added has been proposed. The method is based on the admixing of N-acylamino acid (peptide) esters and nucleophiles (amides or tert.-butylesters of amino acids or peptides, peptides) with various proteolytic enzymes such as α-chymotrypsin, trypsin, proteinase K, subtilisin, elastase and papain in the presence of Na2CO3. 10H2O. In most instances, acylating components were completely converted within a few hours giving satisfactory yields of desired peptide products.  相似文献   

6.
Proline-specific endopeptidase (PSE) (EC 3.4.21.26) was investigated for its potential as a catalyst in peptide synthesis. Using an activated peptide ester or a peptide amide as the acyl component, the enzyme catalyzed kinetically controlled aminolysis and transpeptidation respectively, with various amino acid amides as acyl acceptors. To a certain extent the nucleophile preference reflected the amino acid preference in the S1-position of the enzyme in peptide hydrolysis: the highest fractions of aminolysis were obtained using amino acid amides with hydrophobic side-chains (e.g. Leu-NH2, Phe-NH2). PSE also catalyzed the thermodynamically controlled condensation of short peptides with a free carboxyterminus and various amino acid amides. This enabled us to examine the acceptance of different acyl components in the substrate-binding site of the enzyme with regard to their amino acid composition: In the S1 position proline was clearly favored, but alanine was also accepted, whereas the S2 subsite accepted various amino acids rather unspecifically. Since PSE was shown to be extremely sensitive against water-miscible organic solvents, an alternative approach was used to increase yields in enzymatic peptide synthesis: a derivative of PSE in which the catalytic Ser-556 is converted to a Cys was constructed by protein engineering. This mutant (PSEcys) exhibited a dramatically increased peptide ligase activity in aqueous solution.  相似文献   

7.
Summary Lysine-rich proteinoids in aqueous solution catalyze the formation of peptides from free amino acids and ATP. This catalytic activity is not found in acidic proteinoids, even though the latter contain some basic amino acid. The pH optimum for the synthesis is about 11, but is appreciable below 8 and above 13. Temperature data indicate an optimum at 20°C or above, with little increase in rate to 60°C. Pyrophosphate can be used instead of ATP, with lesser yields resulting. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous amino acid.Proofs should be sent to S.W. Fox, Institute for Molecular and Cellular Evolution, University of Miami, 521 Anastasia Avenue, Coral Gables, FL 33134  相似文献   

8.
The membrane-associated proteinase of Streptococcus lactis strain 3 hydrolyzed αs, 1-casein B into 11 peptide fragments. Eight of the 11 peptides were purified and partially characterized. Each peptide contained several, but not all six, essential amino acids required for growth. The culture was able to utilize one peptide as the sole source for the essential amino acid leucine. Leucine, serine, valine, and glycine were found to be NH2-terminal residues. Two of the peptides were phosphopeptides. The data support the functional role of the membrane-associated proteinase as being involved in the initial breakdown of proteins to peptides.  相似文献   

9.
We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R2 = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase134-143 peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase134-143 peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R2 = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase134-143 peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase134-143 peptide.  相似文献   

10.
Summary The adsorption of ATP and ADP on montmorillonite, kaolinite, and A1(OH)3 was studied as a funtion of pH and, for montmorillonite and kaolinite, as a funtion of the ionic composition of the system. The three minerals exhibit different adsorption charcteristics. Mg2+- and Zn2+-montmorillonite adsorb ATP and ADP more than Na+-montmorillonite, presumably because of complex formation. In kaolinite, the effect of these divalent cations is small. Pure ATP decomposes upon heating, and the rate of the decomposition is accelerated by the presence of glycine. Drying and heating glycine to 70°C under vacuum in the presence of ATP results in abiotic peptide formation with yields up to 0.25%. This peptide formation also occurs when kaolinite or montmorillonite is added to the system. The presence of kaolinite, Mg2+-or Zn2+-koalinite, or Mg2+-montmorillonite results in a reduction in the rate of the ATP decomposition in the abiotic peptide synthesizing system. These results suggest that one role for clays and metal ions in chemical evolution may have been the stabilization of nucleotides during prebiotic peptide synthesis.On Leave from the Hebrew University of Jerusalem, Israel  相似文献   

11.
Summary Several glycine oligomers were formed up to a hexamer in neutral aqueous solution by using Gly-NH2, an intermediate in the formation of glycine by the Strecker synthesis. The optimum pH was around 7 in order to produce (Gly)2 in the presence of guanosine. The elongation of the glycine peptide was demonstrated by analyzing the n+1 mer of glycine from the reaction of the Gly-NH2 and (Gly)n system. (n=0, 2, 3). The peptide formation was promoted by a basic catalyst such as a nucleic base. Guanosine and GMP showed preferential catalytic effect in regard to peptide formation among nucleosides and 5′-mononucleotides, respectively. This is an example of a specific chemical interaction between an amino acid and nucleic base. Other peptides were formed by using Phac-Phe-NH2 and β-asparagine. The aqueous mixture of phenylpyruvate, ammonium sulfate and glycine gave a peak corresponding to Phac-Phe-Gly in HPLC. The system including β-asparagine and glycine allowed for the formation of α-Asp-Gly and β-Asp-Gly in a ratio of about 1 to 4.  相似文献   

12.
R S Lord  D J Cox 《Biopolymers》1973,12(10):2359-2373
Oligopeptides containing glycine and one or two L -alanyl or L -glutamyl residues have been studied by circular dichroism (CD) and optical rotatory dispersion (ORD) in aqueous solution at pH 1.0, pH 6.0, and pH 10.0 and in aqueous ethanol. Two glycyl residues are required to remove effects of α-carboxyl or amino titration on the optical activity of the internal alanyl or glutamyl residues. The CD spectra of the alanyl and protonated glutamyl residues are similar, having two regions of negative ellipticity around 215 nm resulting in a spectrum reassembling that of poly-α-L -glutamic acid (PGA) at high pH. Another large positive band below 190 nm was observed for gly2-glu2-gly2 in water at pH 6 and 10 and for several peptides in aqueous ethanol. Residue ellipticities were approximately additive in every case except for peptides containing intrenal glutamyl residu at pH 6.0.  相似文献   

13.
The kinetically controlled synthesis of N-benzyloxycarbonyl (Z)-dipeptides was investigated by the use of free amino acids as nucleophiles and a cysteine protease papain as catalyst. The coupling efficiency was significantly improved by the combined use of the carbamoylmethyl (Cam) ester of a Z-amino acid as acyl donor and frozen aqueous solution (ice, −16 or −24 °C) as reaction medium. The yield of peptide synthesis became high when both P1- and P1-positions were occupied by small non-polar amino acids (Z-Gly-Gly-OH, 76%; Z-Gly-Ala-OH, 75%; Z-Ala-Ala-OH, 72%). Similar results were observed by the use of ficin as catalyst instead of papain. Furthermore, this strategy was applied to the papain-catalyzed incorporation of a d-configured amino acid such as d-alanine into the resulting peptides. Although the coupling in aqueous solution (30 °C) afforded the desired Z-dipeptides in low yields, the freezing of reaction medium reduced significantly unfavorable hydrolysis of the acyl donors, resulting in improvement of the coupling efficiency (Z-Gly-d-Ala-OH, 80%; Z-Ala-d-Ala-OH, 45%; Z-d-Ala-Ala-OH, 22%).  相似文献   

14.
Changes in pH resulting in modifications of charge can dramatically alter the folding and interaction of proteins. This article probes the effects of charge and hydrophobicity on the oligomerization of macrocyclic β-sheet peptides derived from residues 11–17 of IAPP (RLANFLV). Previous studies have shown that a macrocyclic β-sheet peptide containing this IAPP sequence (peptide 1Arg) does not form oligomers in aqueous solution at low millimolar concentrations. Replacing arginine with the uncharged isostere citrulline generates a homologue (peptide 1Cit) that forms a tetramer consisting of a sandwich of hydrogen-bonded dimers. The current study probes the role of charge and hydrophobicity by changing residue 11 to glutamic acid (peptide 1Glu) and leucine (peptide 1Leu). Diffusion-ordered spectroscopy (DOSY) studies show that peptides 1Glu and 1Leu form tetramers in solution. NOESY studies confirm that both peptides form the same sandwich-like tetramer as peptide 1Cit. 1H NMR spectroscopy at various concentrations reveals that peptide 1Leu has the highest propensity to form tetramers. The effects of pH and charge on oligomerization are further probed by incorporating histidine at position 11 (peptide 1His). DOSY studies show that peptide 1His forms a tetramer at high pH. At low pH, peptide 1His forms a new species that has not been previously observed by our research group—a dimer. These studies demonstrate the importance of charge and hydrophobicity in the oligomerization of IAPP-derived peptides.  相似文献   

15.
Pyruvate dehydrogenase complex activity from spinach leaf mitochondria was inhibited up to 90% within 2 min of incubation with 1 mm ATP at 27 °C. The inhibition was time, temperature and ATP concentration dependent. The inhibition was partially prevented with 3.0 mm dichloroacetate, a known inhibitor of mammalian pyruvate dehydrogenase kinases. Optimum pH for ATP-dependent inactivation was between 8.0 and 9.0 The inactivated complex was reactivated with 10 to 20 mm MgCl2. Complete reactivation occurs within 10 min after MgCl2 addition. Reactivation was inhibited by fluoride, a known inhibitor of mammalian pyruvate dehydrogenase phosphatase. Optimum pH for Mg2+-dependent reactivation was 8.0. It is concluded that the inactivation and reactivation process of pyruvate dehydrogenase complex from spinach leaf mitochondria is due to phosphorylation and dephosphorylation.  相似文献   

16.
We studied protein synthesis, lipid synthesis and CO2 production by oxidation of glycine, alanine and leucine by slices of rat hippocampus during the period of brain growth spurt. The metabolism of the three amino acids decreased with the age of the animals, A major reduction was observed in protein synthesis, which was 4 times higher at 7 days of age than at 21 days of age for all amino acids studied. Glycine oxidation to CO2 was twice as high as alanine oxidation and ten times higher than leucine oxidation. The major pathway of leucine utilization was incorporation into proteins. Glycine was the amino acid that had the highest metabolic rate.  相似文献   

17.
The phosphorylation of thymidine has been studied in a model evaporating pond environment. Evaporation of dilute solutions of thymidine and ammonium oxalate in the presence of apatite leads to the synthesis of nucleotides. The presence of organic compounds such as cyanamide or urea substantially increases the yields of products. Solutions of cyanogen, when heated and evaporated in the presence of nucleoside and apatite, produce similarly high yields of nucleotide without added condensing agents. The mechanism of the reaction appears to involve the hydrolysis of cyanogen to produce ammonium oxalate and urea, among other products. An evolutionary continuum leading from the cosmically abundant CN moiety to the establishment of conditions favorable for phosphorylation on the primitive earth is suggested.  相似文献   

18.
The interaction of Cu(II) with the protamine clupeine YII (containing proline at the N-terminal) and with four peptides (H-Ala-Arg-OMe, H-Ala-Arg2-OMe, H-Pro-Arg-OMe, and H-Arg4-Tyr) has been studied by means of absorption, CD, and pH neasurements. The first two peptides mimic clupeine YI and Z N-terminals; the third, the clupeine YII N-terminal. At 1:1 molar ratio, clupeine YII yields two complexes: the first (I), at pH 6.6, through coordination via the N-terminal and the contiguous peptide nitrogen forming a five-membered chelate; the second (II), at pH 8.5, through the occupancy of the other two corners of the coordination square by amino nitrogens of the lateral chains. These complexes are strictly analogous and occur at the same pH as those formed with clupeine Z. Under the same conditions, all the peptides yield complex I in the first step, although the pH at which this complex is fully defined depends on the number of residues in the chain. It is 8.5 for dipeptides, decreases to 6.5 by the addition of a third residue to the chain, and remains constant when the number of residues is three or more. The amino nitrogens of lateral chains are unable to coordinate to the metal in a second step unless one additional peptide bond lies between the N-terminal residue and that containing the lateral chain bound to the metal. Thus, H-Ala-Arg-OMe and H-Pro-Arg-OMe form hydroxyl complexes in a second step (pH 11), by deprotonation of one of the water molecules coordinated to the metal; one of the lateral chains of H-Ala-Arg2-OMe is able to coordinate in a second step (pH 8.5), but it is only with H-Arg4-Tyr that a second complex (II) is obtained in which two amino nitrogens of lateral chains supersede the oxygens of water molecules in I, at pH 8.5.  相似文献   

19.
《Process Biochemistry》2010,45(7):1163-1167
The kinetically controlled synthesis of cephalexin in aqueous two-phase systems was studied, using immobilized penicillin acylase, 7-amino 3-desacetoxycephalosporanic acid as nucleophile and phenylglycine methyl ester as acyl donor. The organic phases used were 80% (v/v) polyethyleneglycol 400 and 600 and the aqueous phase was 2.5 M (NH4)2SO4. 7-amino 3-desacetoxycephalosporanic acid and cephalexin partition coefficients were determined at pH 7.4 and 7.8, at 14 °C and 20 °C. Highest partition coefficient for cephalexin was obtained for polyethyleneglycol 400–(NH4)2SO4 at pH 7.4 and 20 °C, while the lowest partition coefficient for 7-amino desacetoxycephalosporanic acid was obtained in the same system at pH 7.8 and 14 °C. No significant effect of pH was observed on conversion yield and productivity of cephalexin synthesis; however, higher values were obtained with polyethyleneglycol 400 as organic phase. Higher conversion yields with both biphasic systems were obtained at the lowest temperature, where product hydrolysis was lower; volumetric productivity was higher for the fully aqueous medium (control), being higher at 20 °C. All parameters of synthesis were improved at higher substrates concentrations, obtaining conversion yields of 78.2% and 65.4%, with 60 mM 7-amino desacetoxycephalosporanic acid for the polyethyleneglycol 400–(NH4)2SO4 system and the control, respectively.  相似文献   

20.
Peptide synthesis catalyzed by papain at alkaline pH values   总被引:1,自引:0,他引:1  
The synthesis of peptides in the presence of papain at pH 8-9.5 is described. Starting substances are acylamino acid alkyl esters (the carboxyl component) and amides or tert.-butylesters of amino acids, as well as peptide (the amino component). Under such conditions secondary hydrolysis is not essential, making the synthesis of peptides soluble in aqueous medium. The yield of peptides is 50-94%. The effect of different factors (temperature, solvents, reagent concentrations) on the result of the reaction has been studied. It has been found that an excess of the carboxyl component is expedient to increase the yield of peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号