首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immune response to natural infection with Borrelia burgdorferi appears to differ from that seen in small mammals infected by needle inoculation. In humans, antibody to outer surface proteins A and B (OspA and OspB) is not detectable until late in infection, but small mammals inoculated with B. burgdorferi produce early antibody to OspA and OspB. To investigate this disparity we compared the immune response in hamsters to B. burgdorferi after needle inoculation with cultured organisms or infected tick homogenates with the immune response after tick transmitted (natural) infection. We determined that the antibody response to OspA and OspB after natural infection of hamsters is similar to that seen in humans, and differs from the antibody response after hamster infection by needle inoculation. High titers of antibody to OspA and OspB were undetectable even 42 wk after bite by B. burgdorferi-infected ticks. The failure to produce antibody to OspA and OspB was not dependent on challenge dose, because animals inoculated by needle with low doses (1 x 10(5) to 1 x 10(6) cells) of B. burgdorferi produced antibody to OspA and OspB. A rapid but limited anti-41-kDa response was observed. One possible new Ag, 43 kDa (p43), was identified. The antibody response to p43 was independent of the route of inoculation. Our results suggest that the hamster immune response to tick-transmitted Borrelia burgdorferi differs from the response to needle inoculated, cultured organisms.  相似文献   

2.
Lyme borreliosis is a multisystem disorder caused by the spirochete Borrelia burgdorferi that is transmitted to humans by the tick Ixodes dammini. The immune response against the 31 kDa OspA, which is one of the most abundant B. burgdorferi proteins, appears to be critical in preventing infection and tissue inflammation. Detailed knowledge of the immunological and molecular characteristics of the OspA protein is important for the development of reliable diagnostic assays. In this study, we characterized a new conformational epitope present within the middle part of B. burgdorferi OspA. Our approach used enzymatic proteolyses of the immune complex followed by mass spectrometric identification of the peptides bound to the antibody. It appears to be one of the first reports on the characterization of a discontinuous epitope using mass spectrometry.  相似文献   

3.
Borrelia burgdorferi causes Lyme disease, a multisystem illness that can persist in humans for many years. We describe recombination between homologous genes encoding the major outer surface proteins (Osps) A and B of B. burgdorferi which both deletes osp gene sequences and creates chimaeric gene fusions. Recombinant osp genes occur in multiple strains and encode unique proteins that lack some characteristic Osp epitopes. Antigenic variation in Osp through recombination may be relevant to the persistence of B. burgdorferi in an infected host, and has important implications for the utility of OspA and OspB as diagnostic or vaccine candidates for Lyme disease. We also describe Osp variation arising from nonsense mutations and sequence divergence, which may also represent significant sources of Osp polymorphism.  相似文献   

4.
Lyme borreliosis: host responses to Borrelia burgdorferi.   总被引:28,自引:0,他引:28       下载免费PDF全文
The chronic inflammatory condition that develops after infection by B. burgdorferi is a complex process resulting from host responses to a limited number of organisms. Amplification mechanisms driven by potent proinflammatory molecules, i.e., IL-1, may explain the vigorous response to a paucity of organisms. Spirochete dissemination to distant locations involves adherence to and penetration across endothelium and may be facilitated by host responses that increase vessel permeability. The apparent lack of tissue tropism in Lyme disease is reflected in the organism's ability to adhere to different eucaryotic cell types in vitro and the wide distribution of B. burgdorferi in various organs of infected humans and experimentally infected animals. While phagocytosis and complement activation have been observed in vitro, the specific immune response that develops in humans is inefficient in eradicating the organisms, which may possess some mechanism(s) to evade this response. There is significant evidence for host autoreactivity based on antigenic cross-reactivity between the 41-kDa flagellar subunit and stress proteins of the spirochetes and endogenous host cell components. Although the outer surface proteins appear to be suitable candidates as targets for vaccination in animal studies, fundamental differences in the immune response to spirochetal components may preclude their use in humans.  相似文献   

5.
Antigenic variation is an effective strategy evolved by pathogenic microbes to avoid immune destruction. Variable Ags such as the variable major protein of Borrelia hermsii, the variant surface glycoprotein of African trypanosomes, and the pilin of Neisseria gonorrhoeae include an immunodominant variable domain and one or more invariable domains that are not antigenic. Short, nonantigenic, invariable regions also may be present within the variable domain. VlsE (variable major protein-like sequence, expressed), the variable surface Ag of Borrelia burgdorferi, the Lyme disease spirochete, also contains both variable and invariable domains. In addition, interspersed within the VlsE variable domain there are six invariable regions (IR1-6) that together amount to half of this portion's primary structure. We show here that these IRs are conserved among strains and genospecies of the B. burgdorferi sensu lato complex. Surprisingly, unlike the invariable regions of variable major protein, variant surface glycoprotein, and pilin, which are not antigenic in natural infections, the most conserved of the IRs, IR6, is immunodominant in Lyme disease patients and in monkeys infected with B. burgdorferi. IR6 is exposed on the surface of VlsE, as assessed by immunoprecipitation experiments, but is inaccessible to Ab on the spirochete's outer membrane, as demonstrated by immunofluorescence and in vitro killing assays. VlsE thus significantly departs from the antigenic variation paradigm, whereby immunodominance is only manifest in variable portions. We submit that IR6 may act as a decoy epitope(s) and contribute to divert the Ab response from other, perhaps protective regions of VlsE.  相似文献   

6.
Antisera to BBK32 (a Borrelia burgdorferi fibronectin-binding protein) and BBK50, two Ags synthesized during infection, protect mice from experimental syringe-borne Lyme borreliosis. Therefore, B. burgdorferi bbk32 and bbk50 expression within Ixodes scapularis ticks and the murine host, and the effect of BBK32 and BBK50 antisera on spirochetes throughout the vector-host life cycle were investigated. bbk32 and bbk50 mRNA and protein were first detected within engorged ticks, demonstrating regulated expression within the vector. Then bbk32 expression increased in mice at the cutaneous site of inoculation. During disseminated murine infection, bbk32 and bbk50 were expressed in several murine tissues, and mRNA levels were greatest in the heart and spleen at 30 days. BBK32 antisera protected mice from tick-borne B. burgdorferi infection and spirochete numbers were reduced by 90% within nymphs that engorged on immunized mice. Moreover, 75% of these ticks did not retain spirochetes upon molting, and subsequent B. burgdorferi transmission by adult ticks was impaired. Larval acquisition of B. burgdorferi by I. scapularis was also inhibited by BBK32 antisera. These data demonstrate that bbk32 and bbk50 are expressed during tick engorgement and that BBK32 antisera can interfere with spirochete transmission at various stages of the vector-host life cycle. These studies provide insight into mechanisms of immunity to Lyme borreliosis and other vector-borne diseases.  相似文献   

7.
The Lyme disease spirochete, Borrelia burgdorferi, produces two outer surface lipoproteins, OspA and OspB, that are essential for colonization of tick vectors. Both proteins are highly expressed during transmission from infected mammals to feeding ticks and during colonization of tick midguts, but are repressed when bacteria are transmitted from ticks to mammals. Humans and other infected mammals generally do not produce antibodies against either protein, although some Lyme disease patients do seroconvert and produce antibodies against OspA for unknown reasons. We hypothesized that, if such patients had been fed upon by additional ticks, bacteria moving from the patients' bodies to the feeding ticks would have produced OspA and OspB proteins, which then led to immune system recognition and antibody production. This hypothesis was tested by analyzing immune responses of infected mice following feedings by additional Ixodes scapularis ticks. However, results of the present studies demonstrate that expression of OspA and OspB by B. burgdorferi during transmission from infected mammals to feeding ticks does not trigger seroconversion.  相似文献   

8.
9.
Abstract A murine monoclonal antibody, designated MA-2G9, directed against outer surface protein A (OspA) of the Lyme disease spirochete, Borrelia burgdorferi , has been produced. Antibody MA-2G9, IgG1 subclass, was purified by affinity chromatography on protein G Sepharose column and used for purification of OspA antigen from Borrelia burgdorferi cell lysate. Epitope specificity was studied by Western immunoblotting, using several strains of B. burgdorferi and non-Lyme disease bacteria such as Treponema pallidum and B. hermsii . The MA-2G9 monoclonal antibody reacted specifically with recombinant OspA aas well as with native OspA in sonicated B. burgdorferi strains. No reaction was observed with T. pallidum, Escherichia coli, Staphylococcus aureus and B. hermsii lysates. The MA-2G9 antibody also recognized the denatured form of OspA indicating that it is directed against sequential epitope and not conformational epitope.  相似文献   

10.
To initiate infection, a microbial pathogen must be able to evade innate immunity. Here we show that the Lyme disease spirochete Borrelia burgdorferi depends on its surface lipoproteins for protection against innate defences. The deficiency for OspC, an abundantly expressed surface lipoprotein during early infection, led to quick clearance of B. burgdorferi after inoculation into the skin of SCID mice. Increasing expression of any of the four randomly chosen surface lipoproteins, OspA, OspE, VlsE or DbpA, fully protected the ospC mutant from elimination from the skin tissue of SCID mice; moreover, increased OspA, OspE or VlsE expression allowed the mutant to cause disseminated infection and restored the ability to effectively colonize both joint and skin tissues, albeit the dissemination process was much slower than that of the mutant restored with OspC expression. When the ospC mutant was modified to express OspA under control of the ospC regulatory elements, it registered only a slight increase in the 50% infectious dose than the control in SCID mice but a dramatic increase in immunocompetent mice. Taken together, the study demonstrated that the surface lipoproteins provide B. burgdorferi with an essential protective function against host innate elimination.  相似文献   

11.
Borrelia burgdorferi outer surface protein (Osp) A is preferentially expressed by spirochetes in the Ixodes scapularis gut and facilitates pathogen-vector adherence in vitro. Here we examined B. burgdorferi-tick interactions in vivo by using Abs directed against OspA from each of the three major B. burgdorferi sensu lato genospecies: B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii. Abs directed against B. burgdorferi sensu stricto (isolate N40) destroy the spirochete and can protect mice from infection. In contrast, antisera raised against OspA from B. afzelii (isolate ACA-1) and B. garinii (isolate ZQ-1) bind to B. burgdorferi N40 but are not borreliacidal against the N40 isolate. Our present studies assess whether these selected OspA Abs interfere with B. burgdorferi-tick attachment in a murine model of Lyme disease with I. scapularis. We examined engorged ticks that had fed on B. burgdorferi N40-infected scid mice previously treated with OspA (N40, ACA-1, ZQ-1, or mAb C3.78) or control Abs. OspA-N40 antisera or mAb C3.78 destroyed B. burgdorferi N40 within the engorged ticks. In contrast, treatment of mice with OspA-ACA-1 and OspA-ZQ-1 antisera did not kill B. burgdorferi N40 within the ticks but did effectively interfere with B. burgdorferi-I. scapularis adherence, thereby preventing efficient colonization of the vector. These studies show that nonborreliacidal OspA Abs can inhibit B. burgdorferi attachment to the tick gut, highlighting the importance of OspA in spirochete-arthropod interactions in vivo.  相似文献   

12.
Borrelia burgdorferi infection causes an initial skin lesion called erythema migrans (EM) in human Lyme disease and in models of monkey and rabbit borreliosis. EM results from the inflammatory response triggered by spirochete replication and likely develops to contain the initial infection but allows bacterial dissemination to occur. The essential lack of neutrophil involvement in EM histopathology prompted us to examine the consequence of increasing their recruitment in the inflammatory response to the Lyme disease agent. B. burgdorferi was modified genetically to constitutively express and secrete the chemokine KC, a neutrophil chemoattractant. After inoculation into the dermis of the murine host, control spirochetes induced an infiltration of macrophages, neutrophils, and basophils within 6 h; however, the recruited neutrophils and basophils were quickly substituted by eosinophils, and the inflammatory response became macrophage dominant by 16 h. Such a response failed to contain the initial infection and allowed the spirochetes to disseminate. In contrast, B. burgdorferi with KC secretion induced an intensive neutrophil infiltration at the inoculation site, and as a result, the host's ability to control the initial infection was greatly enhanced. Taken together, this study suggests that the failure of sufficient neutrophil recruitment and activation during the initial inflammatory response may allow B. burgdorferi to effectively colonize the mammalian host.  相似文献   

13.
The Rambouillet Forest, a Lyme disease-endemic area near Paris, France, was surveyed from September 1994 to October 1995 to determine the risk periods and zones for humans. Firstly, during the period of Ixodes ricinus activity, abundance of nymphs is greater in spring than in autumn. Secondly, we observed significant variation in nymphal abundance between zones according to the density of cervids. The polymerase chain reaction (PCR) was used to detect DNA of Borrelia burgdorferi sensu lato in 461 unfed nymphs. DNA was detected in 38 nymphs (8.2%). By genospecific PCR based on the OspA gene, we detected the three pathogenic spirochetes with occurrences of 10.3, 31.1 and 58.6 for B. burgdorferi s.s., Borrelia garinii and Borrelia afzelii, respectively, indicating that B. afzelii is probably the main Borrelia species in the Rambouillet Forest. Finally, 11.5% of positive nymphs exhibited a double infection. Infection rates of I. ricinus nymphs by B. burgdorferi s.l. were not significantly different throughout the year for a given area, indicating that the risk periods of acquiring Lyme disease are mainly linked to nymph activity and correspond to spring and autumn. Likewise infection rates of nymphs were not significantly different between zones with a high density of deer (more than 100 animals per 100 ha) and zones with lower deer density (less than 20 animals per 100 ha). In addition to the role of deer as an amplifier of tick populations, these data indicate that zones with a high density of cervids should be considered as higher risk areas. © Rapid Science Ltd. 1998  相似文献   

14.
Borrelia burgdorferi sensu stricto (s.s.) was isolated from questing adult Ixodes scapularis Say ticks collected from Turkey Point Provincial Park (TPPP), Ontario, Canada during 2005-2006. DNA from ten (67%) of 15 pools of ticks was confirmed positive for B. burgdorferi s.s. using polymerase chain reaction (PCR) by targeting the rrf (5S)-rrl (23S) intergenic spacer region and OspA genes. This significant infection rate indicates an accelerated development of B. burgdorferi s.s. in TPPP, because this pathogen was not detected five years previously during sampling of the three motile life stages of I. scapularis. Our study provides the initial report of the presence of B. burgdorferi s.s. in TPPP, which is now endemic for Lyme disease. Ultimately, people and domestic animals are at risk of contracting Lyme disease when they frequent this park.  相似文献   

15.
使用环介导恒温扩增技术,基于莱姆病病原伯氏疏螺旋体的外膜蛋白A(OspA)基因,针对伯氏疏螺旋体不同的基因型设计特异性引物,对国内主要的莱姆病病原伯氏疏螺旋体的3个基因型进行分型鉴定。研究结果表明,设计的引物具有良好的特异性,可以对狭义伯氏疏螺旋体(Borrelia burgdorferi sensu strict)、嘎氏疏螺旋体(B.afzelii)和伽氏疏螺旋体(B.garinii)进行分型鉴定。伯氏疏螺旋体的分型鉴定可以对不同临床症状莱姆病患者的治疗和莱姆病的控制提供一定的依据。  相似文献   

16.
The modulation of human lymphocyte proliferative responses was demonstrated with a recombinant outer surface protein A (OspA) vaccine preparation for the prevention of Borrelia burgdorferi infection. After exposure to either the unaltered vaccine preparation or OspA prepared in saline, normal lymphocyte responses to the mitogens concanavalin A, phytohemagglutinin-M or pokeweed mitogen, or the antigen BCG were consistently reduced. Whole cell extracts of B. burgdorferi also modulated immune responses but required a much greater quantity of protein than needed for the OspA preparation. The magnitude of modulation was directly dependent on the quantity of OspA. OspA interferes with the response of lymphocytes to proliferative stimuli including a blocking of cell cycle phase progression. Future studies designed to delete the particular region or component of the OspA molecule responsible for this effect may lead to improved vaccine preparations.  相似文献   

17.
ABSTRACT: BACKGROUND: Lyme disease in the United States is caused primarily by B. burgdorferi sensu stricto while other species are also prevalent in Europe. Genetic techniques have identified several chromosomal and plasmid-borne regulatory and virulence factors involved in Lyme pathogenesis. B31 and N40 are two widely studied strains of B. burgdorferi, which belong to two different 16 S-23 S rRNA spacer types (RST) and outer surface protein C (OspC) allelic groups. However, the presence of several known virulence factors in N40 has not been investigated. This is the first comprehensive study that compared these two strains both in vitro and using the mouse model of infection. RESULTS: Phylogenetic analyses predict B31 to be more infectious. However, our studies here indicate that N40D10/E9 is more infectious than the B31 strain at lower doses of inoculation in the susceptible C3H mice. Based-upon a careful analyses of known adhesins of these strains, it is predicted that the absence of a known fibronectin-glycosaminoglycan binding adhesin, bbk32, in the N40 strain could at least partially be responsible for reduction in its binding to Vero cells in vitro. Nevertheless, this difference does not affect the infectivity of N40D10/E9 strain. The genes encoding known regulatory and virulence factors critical for pathogenesis were detected in both strains. Differences in the protein profiles of these B. burgdorferi strains in vitro suggest that the novel, differentially expressed molecules may affect infectivity of B. burgdorferi. Further exacerbation of these molecular differences in vivo could affect the pathogenesis of spirochete strains. CONCLUSION: Based upon the studies here, it can be predicted that N40D10/E9 disseminated infection at lower doses may be enhanced by its lower binding to epithelial cells at the site of inoculation due to the absence of BBK32. We suggest that complete molecular analyses of virulence factors followed by their evaluation using the mouse infection model should form the basis of determining infectivity and pathogenicity of different strains rather than simple phylogenetic group analyses. This study further emphasizes a need to investigate multiple invasive strains of B. burgdorferi to fully appreciate the pathogenic mechanisms that contribute to Lyme disease manifestations.  相似文献   

18.
BACKGROUND: Borrelia Burgdorferi has a predilection for collagenous tissue and can interact with fibronectin and cellular collagens. While the molecular mechanisms of how B. burgdorferi targets connective tissues and causes arthritis are not understood, the spirochetes can bind to a number of different cell types, including fibroblasts. A novel circulating fibroblast-like cell called the peripheral blood fibrocyte has recently been described. Fibrocytes express collagen types I and III as well as fibronectin. Besides playing a role in wound healing, fibrocytes have the potential to target to connective tissue and the functional capacity to recruit, activate, and present antigen to CD4(+) T cells. MATERIALS AND METHODS: Rhesus monkey fibrocytes were isolated and characterized by flow cytometry. B. burgdorferi were incubated with human or monkey fibrocyte cultures in vitro and the cellular interactions analyzed by light and electron microscopy. The two strains of B. burgdorferi studied included JD1, which is highly pathogenic for monkeys, and M297, which lacks the cell surface OspA and OspB proteins. RESULTS: In this study, we demonstrate that B. burgdorferi binds to both human and monkey (rhesus) fibrocytes in vitro. This process does not require OspA or OspB. In addition, the spirochetes are not phagocytosed but are taken into deep recesses of the cell membrane, a process that may protect them from the immune system. CONCLUSIONS: This interaction between B. burgdorferi and peripheral blood fibrocytes provides a potential explanation for the targeting of spirochetes to joint connective tissue and may contribute to the inflammatory process in Lyme arthritis.  相似文献   

19.
Borrelia burgdorferi is capable of persistently infecting a variety of hosts despite eliciting potent innate and adaptive immune responses. Preliminary studies indicated that IL-10-deficient (IL-10(-/-)) mice exhibit up to 10-fold greater clearance of B. burgdorferi from target tissues compared with wild-type mice, establishing IL-10 as the only cytokine currently known to have such a significant effect on spirochetal clearance. To further delineate these IL-10-mediated immune effects, kinetic studies indicated that spirochete dissemination to target tissues is similar in both wild-type and IL-10(-/-) mouse strains, and that enhanced clearance of B. burgdorferi in IL-10(-/-) mice is correlated with increased B. burgdorferi-specific Ab as early as 2 wk postinfection. Immunoblot analysis indicated that Abs produced by infected IL-10(-/-) and wild-type mice recognize similar ranges of spirochetal Ags. Immune sera from IL-10(-/-) and wild-type mice also exhibited similar bactericidal activity in vitro, and passive transfer of these immune sera into B. burgdorferi-infected SCID mice caused similar reductions of bacterial numbers in target tissues. Infectious dose studies indicated that 8-fold more B. burgdorferi were needed to efficiently infect naive IL-10(-/-) mice, suggesting these animals possess higher innate barriers to infection. Moreover, macrophages derived from IL-10(-/-) mice exhibit enhanced proinflammatory responses to B. burgdorferi stimulation compared with wild-type controls, and these responses are not significantly affected by the presence of immune serum. These findings confirm that B. burgdorferi clearance by innate immune responses is more efficient in the absence of IL-10, and these activities are not directly related to increased levels of B. burgdorferi-specific Ab.  相似文献   

20.
The recombinant Outer surface protein A (rOspA) from Borrelia burgdorferi is a possible immunogen for protection of infected humans and animals against development of Lyme borreliosis (Lyme disease), a chronic tick-borne disease characterised by diverse dermatologic, neurologic, rheumatic, and cardiac manifestations. For several years, research and development have been directed towards a vaccine for the prevention of this debilitating disease. Numerous animal studies demonstrate that pre-existing antibodies against the outer surface proteins of B. burgdorferi can prevent infection and disease caused by this organism. In this communication, using recombinant DNA technology, genes from B. burgdorferi sensu stricto and B. afzelii were inserted into E. coli-expression vectors and the rOspA were produced. Our aim was to obtain rOspA protein in a purity and quantity desirable for immunization of experimental animals. rOspA is currently the most developed, molecularly-defined vaccine candidate for the prevention of Lyme borreliosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号