首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.  相似文献   

2.
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.  相似文献   

3.
We report the molecular cloning and DNA sequence of the gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. The biotin carboxylase gene encodes a protein of 449 residues that is strikingly similar to amino-terminal segments of two biotin-dependent carboxylase proteins, yeast pyruvate carboxylase and the alpha-subunit of rat propionyl-CoA carboxylase. The deduced biotin carboxylase sequence contains a consensus ATP binding site and a cysteine-containing sequence preserved in all sequenced bicarbonate-dependent biotin carboxylases that may play a key catalytic role. The gene encoding the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase is located upstream of the biotin carboxylase gene and the two genes are cotranscribed. As previously reported by others, the BCCP sequence encoded a protein of 16,688 molecular mass. However, this value is much smaller than that (22,500 daltons) obtained by analysis of the protein. Amino-terminal amino acid sequencing of the purified BCCP protein confirmed the deduced amino acid sequence indicating that BCCP is a protein of atypical physical properties. Northern and primer extension analyses demonstrate that BCCP and biotin carboxylase are transcribed as a single mRNA species that contains an unusually long untranslated leader preceding the BCCP gene. We have also determined the mutational alteration in a previously isolated acetyl-CoA carboxylase (fabE) mutant and show the lesion maps within the BCCP gene and results in a BCCP species defective in acceptance of biotin. Translational fusions of the carboxyl-terminal 110 or 84 (but not 76) amino acids of BCCP to beta-galactosidase resulted in biotinated beta-galactosidase molecules and production of one such fusion was shown to result in derepression of the biotin biosynthetic operon.  相似文献   

4.
Human holocarboxylase synthetase (HCS) catalyzes linkage of the vitamin biotin to the biotin carboxyl carrier protein (BCCP) domain of five biotin-dependent carboxylases. In the two-step reaction, the activated intermediate, bio-5'-AMP, is first synthesized from biotin and ATP, followed by covalent linkage of the biotin moiety to a specific lysine residue of each carboxylase BCCP domain. Selectivity in HCS-catalyzed biotinylation to the carboxylases was investigated in single turnover stopped flow and quench flow measurements of biotin transfer to the minimal biotin acceptor BCCP fragments of the carboxylases. The results demonstrate that biotinylation of the BCCP fragments of the mitochondrial carboxylases propionyl-CoA carboxylase, pyruvate carboxylase, and methylcrotonoyl-CoA carboxylase is fast and limited by the bimolecular association rate of the enzyme with substrate. By contrast, biotinylation of the acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2) fragments, both of which are accessible to HCS in the cytoplasm, is slow and displays a hyperbolic dependence on substrate concentration. The correlation between HCS accessibility to biotin acceptor substrates and the kinetics of biotinylation suggests that mitochondrial carboxylase sequences evolved to produce fast association rates with HCS in order to ensure biotinylation prior to mitochondrial import. In addition, the results are consistent with a role for HCS specificity in dictating biotin distribution among carboxylases.  相似文献   

5.
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.  相似文献   

6.
We gathered primary and tertiary structures of acyl-CoA carboxylases from public databases, and established that members of their biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains occur in one family each and that members of their carboxyl transferase (CT) domains occur in two families. Protein families have members similar in primary and tertiary structure that probably have descended from the same protein ancestor. The BCCP domains complexed with biotin in acyl and acyl-CoA carboxylases transfer bicarbonate ions from BC domains to CT domains, enabling the latter to carboxylate acyl and acyl-CoA moieties. We separated the BCCP domains into four subfamilies based on more subtle primary structure differences. Members of different BCCP subfamilies often are produced by different types of organisms and are associated with different carboxylases.  相似文献   

7.
Li YQ  Sueda S  Kondo H  Kawarabayasi Y 《FEBS letters》2006,580(6):1536-1540
Biotin carboxyl carrier protein (BCCP) is one subunit or domain of biotin-dependent enzymes. BCCP becomes an active substrate for carboxylation and carboxyl transfer, after biotinylation of its canonical lysine residue by biotin protein ligase (BPL). BCCP carries a characteristic local sequence surrounding the canonical lysine residue, typically -M-K-M-. Archaeon Sulfolobus tokodaii is unique in that its BCCP has serine replaced for the methionine C-terminal to the lysine. This BCCP is biotinylated by its own BPL, but not by Escherichia coli BPL. Likewise, E. coli BCCP is not biotinylated by S. tokodaii BPL, indicating that the substrate specificity is different between the two organisms.  相似文献   

8.
Pyruvate carboxylase (PC) is a conserved multifunctional enzyme linked to important metabolic diseases. PC homotetramer is arranged in two layers with two opposing monomers per layer. Cryo-EM explores the conformational variability of PC in the presence of different substrates. The results demonstrate that the biotin-carboxyl carrier protein (BCCP) domain localizes near the biotin carboxylase (BC) domain of its own monomer and travels to the carboxyltransferase (CT) domain of the opposite monomer. All density maps show noticeable conformational differences between layers, mainly for the BCCP and BC domains. This asymmetry may be indicative of a coordination mechanism where monomers from different layers catalyze the BC and CT reactions consecutively. A conformational change of the PC tetramerization (PT) domain suggests a new functional role in communication. A long-range communication pathway between subunits in different layers, via interacting PT-PT and BC-BC domains, may be responsible for the cooperativity of PC from Staphylococcus aureus.  相似文献   

9.
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme that catalyzes the first committed step of fatty acid synthesis. Similar proteins are found in other bacteria and in chloroplasts. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin to a specific lysine residue. However, the BCCP biotinyl domain differs from many of these proteins in that an eight-amino acid residue insertion is present upstream of the biotinylated lysine. X-ray crystallographic and multidimensional NMR studies show that these residues constitute a structure that has the appearance of an extended thumb that protrudes from the otherwise highly symmetrical domain structure. I report that expression of two mutant BCCPs lacking the thumb residues fails to restore growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperature. Alignment of BCCPs from various organisms shows that only two of the eight thumb residues are strictly conserved, and amino acid substitution of either residue results in proteins giving only weak growth of the temperature-sensitive E. coli strain. Therefore, the thumb structure is essential for the function of BCCP in the ACC reaction and provides a useful motif for distinguishing the biotinylated proteins of multisubunit ACCs from those of enzymes catalyzing other biotin-dependent reactions. An unexpected result was that expression of a mutant BCCP in which the biotinylated lysine residue was substituted with cysteine was able to partially restore growth and fatty acid synthesis to the temperature-sensitive E. coli strain. This complementation was shown to be specific to BCCPs having native structure (excepting the biotinylated lysine) and is interpreted in terms of dimerization of the BCCP biotinyl domain during the ACC reaction.  相似文献   

10.
Avidin can form intermolecular cross-links between particles of the pyruvate dehydrogenase multienzyme complex from various sources. Avidin does this by binding to lipoic acid-containing regions of the dihydrolipoamide acetyltransferase polypeptide chains that comprise the structural core of the complex. It is inferred that the lipoyl domains of the acetyltransferase chain extend outwards from the interior of the enzyme particle, interdigitating between the subunits of the other two enzymes bound peripherally in the assembled structure, with the lipoyl-lysine residues capable of reaching to within at least 1-2 nm of the outer surface of the enzyme complex (diameter ca. 37 nm). The distribution of enzymic activities between different domains of the dihydrolipoamide acetyltransferase chain implies that considerable movement of the lipoyl domains is a feature of the catalytic activity of the enzyme complex. There is evidence that the lipoyl domain of the 2-oxo acid dehydrogenase complexes is similar in structure to a domain that binds the cofactor biotin, also in amide linkage with a specific lysine residue, in the biotin-dependent class of carboxylases.  相似文献   

11.
Phosphoenolpyruvate carboxylase is an enzyme involved in a wide variety of important metabolic pathways of plants such as anaplerotic reactions and C4 and CAM photosynthetic pathways. The accumulation of molecular sequence data of phosphoenolpyruvate carboxylases has enabled us to investigate the function and molecular evolution of the enzymes by computer-assisted sequence comparison. Here we report the results of sequence comparison of phosphoenolpyruvate carboxylases: (1) Phosphoenofpyruvate carboxylases were classified into four groups; a subgroup of bacterial enzymes and three subgroups of plants enzymes. (2) The divergence time of the monocot enzymes involved in the C4 pathways was roughly estimated to be 150—300 million years. On the other hand, the phylogenetic tree of the enzymes suggested that those for the dicot enzymes involved in the C4 and CAM pathways might be close to the divergence time between the monocots and the dicots. (3) The evolutionary positions of the enzymes prevalent in roots or root nodules were identified. (4) Although sorghum and maize contained at least three genes for the enzymes in their genomes, the rates of amino acid substitution of the enzymes were different from gene to gene. The difference could not be explained by either lineage effects nor bias in base contents.  相似文献   

12.
To improve our understanding of pyruvate carboxylase (PC)(EC 6.4.1.1) structure and the evolution of the biotin-dependent carboxylases we have isolated and sequenced a yeast (Saccharomyces cerevisiae) genomic DNA fragment encoding PC. The identity of the cloned gene was confirmed by comparing the encoded protein with the sequence of a 26 amino acid biotin-containing peptide isolated from yeast PC. The yeast PC sequence is homologous (43% amino acid homology) to the rat PC sequence, although the carboxyl-terminus was found to be 44 residues from the biotinyl-lysine whereas in all biotin carboxylases sequenced to date the biotin is 35 residues from the carboxyl-terminus.  相似文献   

13.
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.  相似文献   

14.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In Escherichia coli, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. The biotin carboxylase component has served for many years as a paradigm for mechanistic studies devoted toward understanding more complicated biotin-dependent carboxylases. The three-dimensional x-ray structure of an unliganded form of E. coli biotin carboxylase was originally solved in 1994 to 2.4-A resolution. This study revealed the architecture of the enzyme and demonstrated that the protein belongs to the ATP-grasp superfamily. Here we describe the three-dimensional structure of the E. coli biotin carboxylase complexed with ATP and determined to 2.5-A resolution. The major conformational change that occurs upon nucleotide binding is a rotation of approximately 45(o) of one domain relative to the other domains thereby closing off the active site pocket. Key residues involved in binding the nucleotide to the protein include Lys-116, His-236, and Glu-201. The backbone amide groups of Gly-165 and Gly-166 participate in hydrogen bonding interactions with the phosphoryl oxygens of the nucleotide. A comparison of this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.  相似文献   

15.
16.
We report characterization of the component proteins and molecular cloning of the genes encoding the two subunits of the carboxyltransferase component of the Escherichia coli acetyl-CoA carboxylase. Peptide mapping of the purified enzyme component indicates that the carboxyltransferase component is a complex of two nonidentical subunits, a 35-kDa alpha subunit and a 33-kDa beta subunit. The alpha subunit gene encodes a protein of 319 residues and is located immediately downstream of the polC gene (min 4.3 of the E. coli genetic map). The deduced amino acid composition, molecular mass, and amino acid sequence match those determined for the purified alpha subunit. Six sequenced internal peptides also match the deduced sequence. The amino-terminal sequence of the beta subunit was found within a previously identified open reading frame of unknown function called dedB and usg (min 50 of the E. coli genetic map) which encodes a protein of 304 residues. Comparative peptide mapping also indicates that the dedB/usg gene encodes the beta subunit. Moreover, the deduced molecular mass and amino acid composition of the dedB/usg-encoded protein closely match those determined for the beta subunit. The deduced amino acid sequences of alpha and beta subunits show marked sequence similarities to the COOH-terminal half and the NH2-terminal halves, respectively, of the rat propionyl-CoA carboxylase, a biotin-dependent carboxylase that catalyzes a similar carboxyltransferase reaction reaction. Several conserved regions which may function as CoA-binding sites are noted.  相似文献   

17.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

18.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

19.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate to form propionyl-CoA and oxalacetate. Within the multi-subunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier and also binds the other two subunits to assist in the overall assembly of the enzyme. The 1.3S subunit is a 123 amino acid polypeptide (12.6 kDa) to which biotin is covalently attached at Lys 89. The three-dimensional solution structure of the full-length holo-1.3S subunit of TC has been solved by multidimensional heteronuclear NMR spectroscopy. The C-terminal half of the protein (51-123) is folded into a compact all-beta-domain comprising of two four-stranded antiparallel beta-sheets connected by short loops and turns. The fold exhibits a high 2-fold internal symmetry and is similar to that of the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase, but lacks an extension that has been termed "protruding thumb" in BCCP. The first 50 residues, which have been shown to be involved in intersubunit interactions in the intact enzyme, appear to be disordered in the isolated 1.3S subunit. The molecular surface of the folded domain has two distinct surfaces: one side is highly charged, while the other comprises mainly hydrophobic, highly conserved residues.  相似文献   

20.
Biotin carboxyl carrier protein (BCCP) is the small biotinylated subunit of Escherichia coli acetyl-CoA carboxylase, the enzyme that catalyzes the first committed step of fatty acid synthesis. E. coli BCCP is a member of a large family of protein domains modified by covalent attachment of biotin. In most biotinylated proteins, the biotin moiety is attached to a lysine residue located about 35 residues from the carboxyl terminus of the protein, which lies in the center of a strongly conserved sequence that forms a tightly folded anti-parallel beta-barrel structure. Located upstream of the conserved biotinoyl domain sequence are proline/alanine-rich sequences of varying lengths, which have been proposed to act as flexible linkers. In E. coli BCCP, this putative linker extends for about 42 residues with over half of the residues being proline or alanine. I report that deletion of the 30 linker residues located adjacent to the biotinoyl domain resulted in a BCCP species that was defective in function in vivo, although it was efficiently biotinylated. Expression of this BCCP species failed to restore normal growth and fatty acid synthesis to a temperature-sensitive E. coli strain that lacks BCCP when grown at nonpermissive temperatures. In contrast, replacement of the deleted BCCP linker with a linker derived from E. coli pyruvate dehydrogenase gave a chimeric BCCP species that had normal in vivo function. Expression of BCCPs having deletions of various segments of the linker region of the chimeric protein showed that some deletions of up to 24 residues had significant or full biological activity, whereas others had very weak or no activity. The inactive deletion proteins all lacked an APAAAAA sequence located adjacent to the tightly folded biotinyl domain, whereas deletions that removed only upstream linker sequences remained active. Deletions within the linker of the wild type BCCP protein also showed that the residues adjacent to the tightly folded domain play an essential role in protein function, although in this case some proteins with deletions within this region retained activity. Retention of activity was due to fusion of the domain to upstream sequences. These data provide new evidence for the functional and structural similarities of biotinylated and lipoylated proteins and strongly support a common evolutionary origin of these enzyme subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号