首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic hypoxia (CH) augments endothelium-derived nitric oxide (NO)-dependent pulmonary vasodilation; however, responses to exogenous NO are reduced following CH in female rats. We hypothesized that CH-induced attenuation of NO-dependent pulmonary vasodilation is mediated by downregulation of vascular smooth muscle (VSM) soluble guanylyl cyclase (sGC) expression and/or activity, increased cGMP degradation by phosphodiesterase type 5 (PDE5), or decreased VSM sensitivity to cGMP. Experiments demonstrated attenuated vasodilatory responsiveness to the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate and to arterial boluses of dissolved NO solutions in isolated, saline-perfused lungs from CH vs. normoxic female rats. In additional experiments, the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, blocked vasodilation to NO donors in lungs from each group. However, CH was not associated with decreased pulmonary sGC expression or activity as assessed by Western blotting and cGMP radioimmunoassay, respectively. Consistent with our hypothesis, the selective PDE5 inhibitors dipyridamole and T-1032 augmented NO-dependent reactivity in lungs from CH rats, while having little effect in lungs from normoxic rats. However, the attenuated vasodilatory response to NO in CH lungs persisted after PDE5 inhibition. Furthermore, CH similarly inhibited vasodilatory responses to 8-bromoguanosine 3'5'-cyclic monophosphate. We conclude that attenuated NO-dependent pulmonary vasodilation after CH is not likely mediated by decreased sGC expression, but rather by increased cGMP degradation by PDE5 and decreased pulmonary VSM reactivity to cGMP.  相似文献   

2.
Cyclic GMP-dependent protein kinase (PKG) plays an important role in regulating pulmonary vasomotor tone in the perinatal period. In this study, we tested the hypothesis that a change in oxygen tension affects PKG-mediated pulmonary vasodilation. Isolated intrapulmonary arteries and veins of near-term fetal lambs were first incubated for 4 h under hypoxic and normoxic conditions (Po2 of 30 and 140 mmHg, respectively) and then contracted with endothelin-1. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cell membrane-permeable analog of cGMP, induced a greater relaxation in vessels incubated in normoxia than in hypoxia. beta-Phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp isomer (Rp-8-Br-PET-cGMPS), a selective inhibitor of PKG, attenuated relaxation induced by 8-BrcGMP (10-4 and 3 x 10-4 M). In the presence of Rp-8-Br-PET-cGMPS, the differential responses to 8-BrcGMP between hypoxia and normoxia treatment were abolished in veins but not in arteries. cGMP-stimulated PKG activity was present in arteries but not in veins after 4 h of hypoxia. Both vessel types showed significant increase in cGMP-stimulated PKG activity after 4 h of normoxia. PKG protein (Western blot analysis) and PKG mRNA levels (quantitative RT-PCR) were greater in veins but not in arteries after 4-h exposure to normoxia vs. hypoxia. These results demonstrate that oxygen augments cGMP-mediated vasodilation of fetal pulmonary arteries and veins. Furthermore, the effect of oxygen on response of the veins to cGMP is due to an increase in the activity, protein level, and mRNA of PKG.  相似文献   

3.
Agonist-induced smooth muscle relaxation occurs following an increase in intracellular concentrations of cGMP or cAMP. However, the role of protein kinase G (PKG) and/or protein kinase A (PKA) in cGMP- or cAMP-mediated pulmonary vasodilation is not clearly elucidated. In this study, we examined the relaxation responses of isolated pulmonary arteries of lambs (age = 10 +/- 1 days), preconstricted with endothelin-1, to increasing concentrations of 8-bromo-cGMP (8-BrcGMP) or 8-BrcAMP (cell-permeable analogs), in the presence or absence of Rp-8-beta-phenyl-1,N(2)-etheno-bromoguanosine cyclic monosphordthioate (Rp-8-PET-BrcGMPS) or KT-5720, selective inhibitors of PKG and PKA, respectively. When examined for specificity, Rp-8-Br-PET-cGMPS abolished PKG, but not PKA, activity in pulmonary arterial extracts, whereas KT-5720 inhibited PKA activity only. 8-BrcGMP-induced relaxation was inhibited by the PKG inhibitor only, whereas 8-BrcAMP-induced relaxation was inhibited by both inhibitors. A nearly fourfold higher concentration of cAMP than cGMP was required to relax arteries by 50% and to activate PKG by 50%. Our results demonstrate that relaxation of pulmonary arteries is more sensitive to cGMP than cAMP and that PKG plays an important role in both cGMP- and cAMP-mediated relaxation.  相似文献   

4.
NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.  相似文献   

5.
In a variety of systemic blood vessels, protein kinase G (PKG) plays a critical role in mediating relaxation induced by agents that elevate cGMP, such as nitric oxide. The role of PKG in nitric oxide- and cGMP-induced relaxation is less certain in the pulmonary circulation. In the present study, we examined the effects of inhibitors of PKG on the responses of isolated fourth-generation pulmonary veins of newborn lambs (10 +/- 1 days of age) to nitric oxide and cGMP. In vessels preconstricted with endothelin-1, nitric oxide and 8-bromo-cGMP (a cell-membrane-permeable cGMP analog) induced concentration-dependent relaxation. The relaxation was significantly attenuated by beta-phenyl-1, N(2)-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (Rp-8-Br-PET-cGMPS; a PKG inhibitor) and N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide [H-8; an inhibitor of PKG and protein kinase A (PKA)] but was not affected by KT-5720 (a PKA inhibitor). Biochemical study showed that PKG activity in newborn ovine pulmonary veins was inhibited by 8-Br-PET-cGMPS and H-8 but not by KT-5720. PKA activity was not affected by 8-Br-PET-cGMPS but was inhibited by H-8 and KT-5720. These results suggest that PKG is involved in relaxation of pulmonary veins of newborn lambs induced by nitric oxide and cGMP.  相似文献   

6.
In the isolated rat middle cerebral artery (MCA) we investigated the role of nitric oxide (NO)/cGMP in the vasodilatory response to extraluminal acidosis. Acidosis increased vessel diameter from 140 +/- 27 microm (pH 7.4) to 187 +/- 30 microm (pH 7.0, P < 0.01). NO synthase (NOS) inhibition by N(omega)-nitro-L-arginine (L-NNA, 10 microM) reduced baseline diameter (103 +/- 20 microm, P < 0.01) and attenuated response to acidosis (9 +/- 8 microm). Application of the NO-donors 3-morpholinosydnonimine (1 microM) or S-nitroso-N-acetylpenicillamine (1 microM), or of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 100 microM) reestablished pre-L-NNA diameter at pH 7.4 and reversed L-NNA-induced attenuation of the vessel response to acidosis. Restoration of pre-L-NNA diameter (pH 7.4) by papaverine (20 microM) or nimodipine (30 nM) had no effect on the attenuated response to acidosis. Guanylyl cyclase inhibition with 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (5 microM) or NOS-inhibition with 7-nitroindazole (7-NI, 100 microM) reduced baseline vessel diameter (109 +/- 8 or 127 +/- 11 microm, respectively) and vasodilation to acidosis, and restoration of baseline diameter with 8-BrcGMP (30 microM) completely restored dilation to pH 7.0. Chronic denervation of NOS-containing perivascular nerves in vivo 14 days before artery isolation significantly reduced pH-dependent reactivity in vitro (diameter increase sham: 48 +/- 14 microm, denervated: 14 +/- 8 microm), and 8-BrcGMP (30 microM) restored dilation to pH 7.0 (denervated: 49 +/- 31 microm). Removal of the endothelium did not change vasodilation to acidosis. We conclude that NO, produced by neuronal NOS of perivascular nerves, is a modulator in the pH-dependent vasoreactivity.  相似文献   

7.
We used the patch-clamp technique tostudy the effect of cGMP on the 18-pS K channel in the basolateralmembrane of the rat cortical collecting duct. Addition of 100 µM8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP)increased the activity of the 18-pS K channel, defined byNPo, by 95%. In contrast, applying 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) hasno effect on channel activity. The effect of 8-Br-cGMP was observed only in cell-attached but not in inside-out patches. Application of 1 µM KT-5823, an inhibitor of the cGMP-dependent protein kinase (PKG),not only reduced the channel activity, but also completely abolishedthe stimulatory effect of 8-Br-cGMP, suggesting that the 18-pS Kchannel is not a cGMP-gated K channel. Addition of H-89, an agent thatalso blocks the PKG, mimicked the effect of KT-5823. To examine thepossibility that the effect of 8-Br-cGMP is the result of inhibitingcGMP-dependent phosphodiesterase (PDE) and, accordingly, increasingcAMP or cGMP levels, we explored the effect on the 18-pS K channel ofIBMX, an agent that inhibits the PDE. The addition of 100 µM IBMX hadno significant effect on channel activity in cell-attached patches.Moreover, in the presence of IBMX, 8-Br-cGMP increased the channelactivity to the same extent as that observed in the absence of IBMX,suggesting that the effect of cGMP is not mediated by inhibiting thecGMP-dependent PDE. That the effect of cGMP is mediated by stimulatingPKG was further indicated by experiments in which application ofexogenous PKG restored the channel activity when it decreased after the excision of the patches. In contrast, adding exogenous cAMP-dependent protein kinase catalytic subunit failed to reactivate therun-down channels. We conclude that cGMP stimulates the 18-pS channel, and the effect of cGMP is mediated by PKG.

  相似文献   

8.
Vasodilatory responses to exogenous nitric oxide (NO) are diminished following exposure to chronic hypoxia (CH) in isolated, perfused rat lungs. We hypothesized that both endothelium-derived reactive oxygen species (ROS) and endothelin-1 (ET-1) mediate this attenuated NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined vasodilatory and vascular smooth muscle (VSM) Ca2+ responses to the NO donor spermine NONOate in UTP-constricted, isolated pressurized small pulmonary arteries from control and CH rats. Consistent with our previous findings in perfused lungs, we observed attenuated NO-dependent vasodilation following CH in endothelium-intact vessels. However, in endothelium-denuded vessels, responses to spermine NONOate were augmented in CH rats compared with controls, thus demonstrating an inhibitory influence of the endothelium on NO-dependent reactivity following CH. Whereas both the ROS scavenger tiron and the ETA receptor antagonist BQ-123 augmented NO-dependent reactivity in endothelium-intact vessels from CH rats, neither fully restored vasodilatory responses to those observed following endothelium denudation in vessels from CH rats. In contrast, the combination of tiron and BQ-123 or the nonselective ET receptor antagonist PD-145065 enhanced NO responsiveness in endothelium-intact vessels from CH rats similar to that observed following endothelium denudation. We conclude that both endothelium-derived ROS and ET-1 attenuate NO-dependent pulmonary vasodilation following CH. Furthermore, CH augments pulmonary VSM reactivity to NO.  相似文献   

9.
Chronic hypoxia (CH) increases pulmonary arterial endothelial nitric oxide (NO) synthase (NOS) expression and augments endothelium-derived nitric oxide (EDNO)-dependent vasodilation, whereas vasodilatory responses to exogenous NO are attenuated in CH rat lungs. We hypothesized that reactive oxygen species (ROS) inhibit NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined responses to the EDNO-dependent vasodilator endothelin-1 (ET-1) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP) in isolated lungs from control and CH rats in the presence or absence of ROS scavengers under normoxic or hypoxic ventilation. NOS was inhibited in lungs used for SNAP experiments to eliminate influences of endogenously produced NO. Additionally, dichlorofluorescein (DCF) fluorescence was measured as an index of ROS levels in isolated pressurized small pulmonary arteries from each group. We found that acute hypoxia increased DCF fluorescence and attenuated vasodilatory responses to ET-1 in lungs from control rats. The addition of ROS scavengers augmented ET-1-induced vasodilation in lungs from both groups during hypoxic ventilation. In contrast, upon NOS inhibition, DCF fluorescence was elevated and SNAP-induced vasodilation diminished in arteries from CH rats during normoxia, whereas acute hypoxia decreased DCF fluorescence, which correlated with augmented reactivity to SNAP in both groups. ROS scavengers enhanced SNAP-induced vasodilation in normoxia-ventilated lungs from CH rats similar to effects of hypoxic ventilation. We conclude that inhibition of NOS during normoxia leads to greater ROS generation in lungs from both control and CH rats. Furthermore, NOS inhibition reveals an effect of acute hypoxia to diminish ROS levels and augment NO-mediated pulmonary vasodilation.  相似文献   

10.
The roles of Rho kinase (ROCK) and cGMP-dependent protein kinase (PKG) in cGMP-mediated relaxation of fetal pulmonary veins exposed to chronic hypoxia (CH) were investigated. Fourth generation pulmonary veins were dissected from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days (CH) and from control ewes. After constriction with endothelin-1, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) caused a similar relaxation of both control and CH vessels. Rp-8-Br-PET-cGMPS (a PKG inhibitor) inhibited whereas Y-27632 (a ROCK inhibitor) augmented relaxation of control veins to 8-Br-cGMP. These effects were significantly diminished in CH veins. PKG protein expression and activity were greater whereas ROCK protein expression and activity were less in CH vessels compared with controls. Phosphorylation of threonine 696 (ROCK substrate) and serine 695 (PKG substrate) of the regulatory myosin phosphatase targeting subunit MYPT1 of myosin light chain (MLC) phosphatase was stimulated to a lesser extent in CH than in control veins by endothelin-1 (ROCK stimulant) and 8-Br-cGMP (PKG stimulant), respectively. The phosphorylation and dephosphorylation of MLC caused by endothelin-1 and 8-Br-cGMP, respectively, were less in CH veins than in controls. These results suggest that CH in utero upregulates PKG activity but attenuates PKG action in fetal pulmonary veins. These effects are offset by the diminished ROCK action on MYPT1 and MLC and thus lead to an unaltered response to cGMP.  相似文献   

11.
12.
We examined whether cGMP-dependent protein kinase (PKG) and mitochondrial ATP-sensitive potassium (K(ATP)) channels are involved in S-nitroso-N-acetyl penicillamine (SNAP)-induced reactive oxygen species (ROS) generation. SNAP significantly increased ROS generation in cardiomyocytes. This increase was suppressed by both 5-hydroxydecanoate (5-HD) and glibenclamide. Direct opening of mitochondrial K(ATP) channels with diazoxide led to ROS generation. The increased ROS generation was reversed by N-(2-mercaptopropionyl)glycine (MPG), a scavenger of ROS. Myxothiazol partially suppressed the ROS generation. KT-5823, an inhibitor of PKG, prevented ROS generation, indicating that PKG is required for ROS generation. In addition, 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), an activator of PKG, induced ROS generation. The effect of 8-BrcGMP was reversed by either 5-HD or MPG. YC-1, an activator of guanylyl cyclase, also increased ROS production, which was reversed by 5-HD. Neither LY-294002 nor wortmannin, the inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), affected SNAP's action. In a whole heart study, SNAP significantly reduced infarct size. The anti-infarct effect of SNAP was abrogated by either MPG or 5-HD. This effect was also blocked by PD-98059, an ERK inhibitor, but not by LY-294002. A Western blotting study showed that SNAP significantly enhanced phosphorylation of ERK, which was reversed by MPG. These results suggest that SNAP-induced ROS generation is mediated by activation of PKG and mitochondrial K(ATP) channels and that opening of mitochondrial K(ATP) channels is the downstream event of PKG activation. ROS and mitochondrial K(ATP) channels participate in the anti-infarct effect of SNAP. Moreover, phosphorylation of ERK is the downstream signaling event of ROS and plays a role in the cardioprotection of SNAP.  相似文献   

13.
Pulmonary artery smooth muscle cell (PASMC) relaxation at birth results from an increase in cytosolic cGMP, cGMP-dependent and kinase-mediated activation of the Ca2+-sensitive K+ channel (KCa), and closure of voltage-operated Ca2+ channels (VOCC). How chronic intrauterine pulmonary hypertension compromises perinatal pulmonary vasodilation remains unknown. We tested the hypothesis that chronic intrauterine pulmonary hypertension selectively modifies gene expression to mitigate perinatal pulmonary vasodilation mediated by the cGMP kinase-KCa-VOCC pathway. PASMC were isolated from late-gestation fetal lambs that had undergone either ligation of the ductus arteriosus (hypertensive) or sham operation (control) at 127 days of gestation and were maintained under either hypoxic (approximately 25 Torr) or normoxic (approximately 120 Torr) conditions in primary culture. We studied mRNA levels for cGMP kinase Ialpha (PKG-1alpha), the alpha-chain of VOCC (Cav1.2), and the alpha-subunit of the KCa channel. Compared with control PASMC, hypertensive PASMC had decreased VOCC, KCa, and PKG-1alpha expression. In response to sustained normoxia, expression of VOCC and KCa channel decreased and expression of PKG-1alpha increased. In contrast, sustained normoxia had no effect on PKG-1alpha levels and an attenuated effect on VOCC and KCa channel expression in hypertensive PASMC. Protein expression of PKG-1alpha was consistent with the mRNA data. We conclude that chronic intrauterine pulmonary hypertension decreases PKG expression and mitigates the genetic effects of sustained normoxia on pulmonary vasodilation, because gene expression remains compromised even after sustained exposure to normoxia.  相似文献   

14.
Human cervicalepithelial cells express mRNA for the nitric oxide (NO) synthase (NOS)isoforms ecNOS, bNOS, and iNOS and release NO into the extracellularmedium. NG-nitro-L-arginine methylester (L-NAME), an NOS inhibitor, and Hb, an NO scavenger,decreased paracellular permeability; in contrast, the NO donors sodiumnitroprusside (SNP) andN-(ethoxycarbonyl)-3-(4-morpholinyl)sydnonimine increasedparacellular permeability across cultured human cervical epithelia onfilters, suggesting that NO increases cervical paracellular permeability. The objective of the study was to understand the mechanisms of NO action on cervical paracellular permeability. 8-Bromo-cGMP (8-BrcGMP) also increased permeability, and the effect wasblocked by KT-5823 (a blocker of cGMP-dependent protein kinase), butnot by LY-83583 (a blocker of guanylate cyclase). In contrast, LY-83583and KT-5823 blocked the SNP-induced increase in permeability. Treatmentwith SNP increased cellular cGMP, and the effect was blocked by Hb andLY-83583, but not by KT-5823. Neither SNP nor 8-BrcGMP had modulatedcervical cation selectivity. In contrast, both agents increasedfluorescence from fura 2-loaded cells in theCa2+-insensitive wavelengths, indicating that SNP and8-BrcGMP stimulate a decrease in cell size and in the resistance of thelateral intercellular space. Neither SNP nor 8-BrcGMP had an effect ontotal cellular actin, but both agents increased the fraction ofG-actin. Hb blocked the SNP-induced increase in G-actin, and KT-5823blocked the 8-BrcGMP-induced increase in G-actin. On the basis of theseresults, it is suggested that NO acts on guanylate cyclase andstimulates an increase in cGMP; cGMP, acting via cGMP-dependent proteinkinase, shifts actin steady-state toward G-actin; this fragments thecytoskeleton and renders cells more sensitive to decreases in cell sizeand resistance of the lateral intercellular space and, hence, toincreases in permeability. These results may be important forunderstanding NO regulation of transcervical paracellular permeabilityand secretion of cervical mucus in the woman.

  相似文献   

15.
Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO(-) ) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO(-) donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24 h (with exogenous activation of cGMP) revealed increased ONOO(-) levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO(-) and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity.  相似文献   

16.
The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.  相似文献   

17.
The present studies were undertaken to determine the direct effects of nitric oxide (NO) released from an exogenous donor, S-nitroso-N-acetyl pencillamine (SNAP) on Cl-/OH- exchange activity in human Caco-2 cells. Our results demonstrate that NO inhibits Cl-/OH- exchange activity in Caco-2 cells via cGMP-dependent protein kinases G (PKG) and C (PKC) signal-transduction pathways. Our data in support of this conclusion can be outlined as follows: 1) incubation of Caco-2 cells with SNAP (500 microM) for 30 min resulted in approximately 50% inhibition of DIDS-sensitive 36Cl uptake; 2) soluble guanylate cyclase inhibitors Ly-83583 and (1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one significantly blocked the inhibition of Cl-/OH- exchange activity by SNAP; 3) addition of 8-bromo-cGMP (8-BrcGMP) mimicked the effects of SNAP; 4) specific PKG inhibitor KT-5823 significantly inhibited the decrease in Cl-/OH- exchange activity in response to either SNAP or 8-BrcGMP; 5) Cl-/OH-exchange activity in Caco-2 cells in response to SNAP was not altered in the presence of protein kinase A (PKA) inhibitor (Rp-cAMPS), demonstrating that the PKA pathway was not involved; 6) the effect of NO on Cl-/OH- exchange activity was mediated by PKC, because each of the two PKC inhibitors chelerythrine chloride and calphostin C blocked the SNAP-mediated inhibition of Cl-/OH- exchange activity; 7) SO/OH- exchange in Caco-2 cells was unaffected by SNAP. Our results suggest that NO-induced inhibition of Cl-/OH- exchange may play an important role in the pathophysiology of diarrhea associated with inflammatory bowel diseases.  相似文献   

18.
Increases in endothelial cGMP prevent oxidant-mediated endothelial barrier dysfunction, but the downstream mechanisms remain unclear. To determine the role of cGMP-dependent protein kinase (PKG)(I), human pulmonary artery endothelial cells (HPAEC) lacking PKG(I) expression were infected with a recombinant adenovirus encoding PKG(Ibeta) (Ad.PKG) and compared with uninfected and control-infected (Ad.betagal) HPAEC. Transendothelial electrical resistance (TER), an index of permeability, was measured after H(2)O(2) (250 microM) exposure with or without pretreatment with 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (CPT-cGMP). HPAEC infected with Ad.PKG, but not Ad.betagal, expressed PKG(I) protein and demonstrated Ser(239) and Ser(157) phosphorylation of vasodilator-stimulated phosphoprotein after treatment with CPT-cGMP. Adenoviral infection decreased basal permeability equally in Ad.PKG- and Ad.betagal-infected HPAEC compared with uninfected cells. Treatment with CPT-cGMP (100 microM) caused a PKG(I)-independent decrease in permeability (8.2 +/- 0.6%). In all three groups, H(2)O(2) (250 microM) caused a similar approximately 35% increase in permeability associated with increased actin stress fiber formation, intercellular gaps, loss of membrane VE-cadherin, and increased intracellular Ca(2+) concentration ([Ca(2+)](i)). In uninfected and Ad.betagal-infected HPAEC, pretreatment with CPT-cGMP (100 microM) partially blocked the increased permeability induced by H(2)O(2). In Ad.PKG-infected HPAEC, CPT-cGMP (50 microM) prevented the H(2)O(2)-induced TER decrease, cytoskeletal rearrangement, and loss of junctional VE-cadherin. CPT-cGMP attenuated the peak [Ca(2+)](i) caused by H(2)O(2) similarly (23%) in Ad.betagal- and Ad.PKG-infected HPAEC, indicating a PKG(I)-independent effect. These data suggest that cGMP decreased HPAEC basal permeability by a PKG(I)-independent process, whereas the ability of cGMP to prevent H(2)O(2)-induced barrier dysfunction was predominantly mediated by PKG(I) through a Ca(2+)-independent mechanism.  相似文献   

19.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

20.
Individuals with hyperglycemia exhibit impaired exercise performance and functional vasodilatory response. Based on the importance of arachidonic acid (AA) metabolites in functional vasodilation and the increased thromboxane-to-prostacyclin ratio in diabetes, we hypothesized that chronic hyperglycemia in diabetes increases thromboxane-receptor (TP)-mediated vasoconstriction, resulting in an attenuated functional vasodilation. Three groups of lean Zucker rats (8 wk) were used to test the effects of chronic hyperglycemia on endothelial function: normal, streptozotocin (STZ; 70 mg/kg ip), and STZ + insulin (2 U/day). After 4 wk of treatment, spinotrapezius arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following muscle stimulation and 10 microM AA application in the absence and presence of 1 microM SQ-29548 (TP antagonist). STZ rats exhibited significantly higher fasting glucose levels and attenuated functional and AA-induced dilation compared with normal animals. SQ-29548 improved the vasodilatory responses in STZ rats but had no effect in controls. Insulin treatment normalized both the glucose levels and the vasodilatory responses, and SQ-29548 treatment had no effect on functional or AA-mediated vasodilation in STZ + insulin animals. These results suggest that the impaired functional vasodilation in diabetic rats is due to hyperglycemia-mediated increases in TP-mediated vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号