首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Previous reports have shown that cells infected with promastigotes of some Leishmania species are resistant to the induction of apoptosis. This would suggest that either parasites elaborate factors that block signalling from apoptosis inducers or that parasites engage endogenous host signalling pathways that block apoptosis. To investigate the latter scenario, we determined whether Leishmania infection results in the activation of signalling pathways that have been shown to mediate resistance to apoptosis in other infection models. First, we showed that infection with the promastigote form of Leishmania major, Leishmania pifanoi and Leishmania amazonensis activates signalling through p38 mitogen-activated protein kinase (MAPK), NFkappaB and PI3K/Akt. Then we found that inhibition of signalling through the PI3K/Akt pathway with LY294002 and Akt IV inhibitor reversed resistance of infected bone marrow-derived macrophages and RAW 264.7 macrophages to potent inducers of apoptosis. Moreover, reduction of Akt levels with small interfering RNAs to Akt resulted in the inability of infected macrophages to resist apoptosis. Further evidence of the role of PI3K/Akt signalling in the promotion of cell survival by infected cells was obtained with the finding that Bad, which is a substrate of Akt, becomes phosphorylated during the course of infection. In contrast to the observations with PI3K/Akt signalling, inhibition of p38 MAPK signalling with SB202190 or NFkappaB signalling with wedelolactone had limited effect on parasite-induced resistance to apoptosis. We conclude that Leishmania promastigotes engage PI3K/Akt signalling, which confers to the infected cell, the capacity to resist death from activators of apoptosis.  相似文献   

4.
5.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

6.
7.
8.
In order to elucidate the role of the mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, as well as the survival-associated PI3K/Akt signaling pathway, in the response to chemotherapy, we have conducted a comparative study regarding the effects of doxorubicin on these pathways. Doxorubicin was determined to elicit the apoptosis of NIH3T3 cells in a dose-dependent manner. Prior to cell death, both Akt and p38 MAPK were transiently activated, and subsequently inactivated almost wholly, whereas ERK and JNK evidenced sustained activations in response to the drug treatment. The inhibition of PI3K/Akt and p38 MAPK both accelerated and enhanced doxorubicin-induced apoptosis and ERK inhibition apparently exerted negative effect on apoptosis. The modulation of PI3K/Akt activation by treatment of LY294002 or expression of Akt mutants such as Akt-DN or Myr-Akt exerted a significant effect on the activation of ERK1/2. We also observed that PI3K/Akt and sustained ERK activation were associated intimately with the etoposide-induced apoptosis. Taken together, our results clearly suggest that the differential regulation of the PI3K/Akt, ERK1/2, and p38 MAPK signaling pathways are crucial in the context of DNA-damaging drug-induced apoptosis, and this has compelled us to propose that the sustained activation of ERK1/2 pathway may be generally involved in the apoptosis induced by anticancer DNA-damaging drugs, including doxorubicin and etoposide.  相似文献   

9.
Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3′-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.  相似文献   

10.
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.  相似文献   

11.
Persistence was established after most of the SARS-CoV-infected Vero E6 cells died. RNA of the defective interfering virus was not observed in the persistently infected cells by Northern blot analysis. SARS-CoV diluted to 2 PFU failed to establish persistence, suggesting that some particular viruses in the seed virus did not induce persistent infection. Interestingly, a viral receptor, angiotensin converting enzyme (ACE)-2, was down-regulated in persistently infected cells. G418-selected clones established from parent Vero E6 cells, which were transfected with a plasmid containing the neomycin resistance gene, were infected with SARS-CoV, resulting in a potential cell population capable of persistence in Vero E6 cells. Our previous studies demonstrated that signaling pathways of extracellular signal-related kinase (ERK1/2), c-Jun N-terminal protein kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3'-kinase (PI3K)/Akt were activated in SARS-CoV-infected Vero E6 cells. Previous studies also showed that the activation of p38 MAPK by viral infection-induced apoptosis, and a weak activation of Akt was not sufficient to protect from apoptosis. In the present study, we showed that the inhibitors of JNK and PI3K/Akt inhibited the establishment of persistence, but those of MAPK/ERK kinase (MEK; as an inhibitor for ERK1/2) and p38 MAPK did not. These results indicated that two signaling pathways of JNK and PI3K/Akt were important for the establishment of persistence in Vero E6 cells.  相似文献   

12.
Medullary thyroid cancer (MTC) is an aggressive malignancy responsible for up to 14% of all thyroid cancer‐related deaths. It is characterized by point mutations in the rearranged during transfection (RET) proto‐oncogene. The activated RET kinase is known to signal via extracellular signal regulated kinase (ERK) and phosphoinositide 3‐kinase (PI3K), leading to enhanced proliferation and resistance to apoptosis. In the present work, we have investigated the effect of two serine/threonine‐protein kinase B‐Raf (BRAF) inhibitors (RAF265 and SB590885), and a PI3K inhibitor (ZSTK474), on RET‐mediated signalling and proliferation in a MTC cell line (TT cells) harbouring the RETC634W activating mutation. The effects of the inhibitors on VEGFR2, PI3K/Akt and mitogen‐activated protein kinases signalling pathways, cell cycle, apoptosis and calcitonin production were also investigated. Only the RAF265+ ZSTK474 combination synergistically reduced the viability of treated cells. We observed a strong decrease in phosphorylated VEGFR2 for RAF265+ ZSTK474 and a signal reduction in activated Akt for ZSTK474. The activated ERK signal also decreased after RAF265 and RAF265+ ZSTK474 treatments. Alone and in combination with ZSTK474, RAF265 induced a sustained increase in necrosis. Only RAF265, alone and combined with ZSTK474, prompted a significant drop in calcitonin production. Combination therapy using RAF265 and ZSTK47 proved effective in MTC, demonstrating a cytotoxic effect. As the two inhibitors have been successfully tested individually in clinical trials on other human cancers, our preclinical data support the feasibility of their combined use in aggressive MTC.  相似文献   

13.
Fibroblast growth factors (FGFs) signal through high-affinity tyrosine kinase receptors to regulate a diverse range of cellular processes, including cell growth, differentiation and migration, as well as cell death. Here we identify XFLRT3, a member of a leucine-rich-repeat transmembrane protein family, as a novel modulator of FGF signalling. XFLRT3 is co-expressed with FGFs, and its expression is both induced after activation and downregulated after inhibition of FGF signalling. In gain- and loss-of function experiments, FLRT3 and FLRT2 phenocopy FGF signalling in Xenopus laevis. XFLRT3 signalling results in phosphorylation of ERK and is blocked by MAPK phosphatase 1, but not by expression of a dominant-negative phosphatidyl inositol 3-OH kinase (PI(3)K) mutant. XFLRT3 interacts with FGF receptors (FGFRs) in co-immunoprecipitation experiments in vitro and in bioluminescence resonance energy transfer assays in vivo. The results indicate that XFLRT3 is a transmembrane modulator of FGF-MAP kinase signalling in vertebrates.  相似文献   

14.
15.
Human mesenchymal stem cells (MSCs) modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF) and the expression of BDNF receptor tyrosine receptor kinase B (TrkB) correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε) and kinesin heavy chain (KIF5B) increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1) decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.  相似文献   

16.
Rheumatoid arthritis (RA) is characterized by persistent joint synovial tissue inflammation. Leflunomide is an immunomodulatory agent that has been approved for treatment of active RA. In the past few years, uses other than RA treatment have appeared. Leflunomide has been reported to show antitumor potential through inhibition of cancer cell proliferation. We thus tested the antiproliferative potential of leflunomide on HEL and K562 erythroleukemia cells. The findings summarized in this report demonstrate for the first time that low dose leflunomide prolonged survival and reduced apoptosis induced by several anticancer agents in erythroleukemia cells. We showed that in treated cells, leflunomide reduced the signalling pathways involved in promoting apoptosis by reducing p38 MAPK and JNK basal activity. On the other hand, leflunomide transiently activated the ERK signalling pathway and induced a sustained activation of Akt. We also showed that leflunomide reduced caspase-3 activity and DNA fragmentation induced by anticancer agents. By using an inhibitory strategy, we showed that inhibition of Akt activation but not ERK abolished the protective effect of leflunomide. Thus our findings suggested that leflunomide reduced apoptosis induced by anticancer agents through PI3K/Akt signalling activation.  相似文献   

17.
We previously demonstrated that Mycobacterium tuberculosis (M. tbc)-induced interleukin (IL)-12 expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) 1/2 pathways in human monocyte-derived macrophages (MDMs). To extend these studies, we examined the nature of the involvement of toll-like receptors (TLRs) and intracellular signalling pathways downstream from PI3K in M. tbc-induced IL-23 expression in human MDMs. M. tbc-induced Akt activation and IL-23 expression were essentially dependent on TLR2. Blockade of the mammalian targets of rapamycin (mTOR)/70 kDa ribosomal S6 kinase 1 (S6K1) pathway by the specific inhibitor rapamycin greatly enhanced M. tbc-induced IL-12/IL-23 p40 (p40) and IL-23 p19 (p19) mRNA and IL-23 protein expression. In sharp contrast, p38 mitogen-activated protein kinase (MAPK) inhibition abrogated the p40 and p19 mRNA and IL-23 protein expression induced by M. tbc. Furthermore, the inhibition of PI3K-Akt, but not ERK 1/2 pathway, attenuated M. tbc-induced S6K1 phosphorylation, whereas PI3K inhibition enhanced p38 phosphorylation and apoptosis signal-regulating kinase 1 activity during exposure to M. tbc. Although the negative or positive regulation of IL-23 was not reversed by neutralization of IL-10, it was significantly modulated by blocking TLR2. Collectively, these findings provide new insight into the homeostatic mechanism controlling type 1 immune responses during mycobacterial infection involving the intracellular network of PI3K, S6K1, ERK 1/2 and p38 MAPK pathways in a TLR2-dependent manner.  相似文献   

18.
Hypoxic preconditioning (HP) 24 h before hypoxic-ischemic (HI) injury confers significant neuroprotection in neonatal rat brain. Recent studies have shown that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) intracellular signaling pathways play a role in the induction of tolerance to ischemic injury in heart and brain. To study the role of MAPK (ERK1/2, JNK, p38MAPK) and PI3K/Akt/GSK3beta signaling pathways in hypoxia-induced ischemic tolerance, we examined the brains of newborn rats at different time points after exposure to sublethal hypoxia (8% O(2) for 3 h). Immunoblot analysis showed that HP had no effect on the levels of phosphorylated Akt, GSK3beta, JNK and p38MAPK. In contrast, significantly increased levels of phosphorylated ERK1/2 were observed 0.5 h after HP. Double immunofluorescence staining showed that hypoxia-induced ERK1/2 phosphorylation was found mainly in microvessels throughout the brain and in astrocytes in white matter tracts. Inhibition of hypoxia-induced ERK1/2 pathway with intracerebral administration of U0126 significantly attenuated the neuroprotection afforded by HP against HI injury. These findings suggest that activation of ERK1/2 signaling may contribute to hypoxia-induced tolerance in neonatal rat brain in part by preserving vascular and white matter integrity after HI.  相似文献   

19.
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.  相似文献   

20.
Expression of the gene encoding the MKP-3/Pyst1 protein phosphatase, which inactivates ERK MAPK, is induced by FGF. However, which intracellular signalling pathway mediates this expression is unclear, with essential roles proposed for both ERK and PI(3)K in chick embryonic limb. Here, we report that MKP-3/Pyst1 expression is sensitive to inhibition of ERK or MAPKK, that endogenous MKP-3/Pyst1 co-localizes with activated ERK, and expression of MKP-3/Pyst1 in mice lacking PDK1, an essential mediator of PI(3)K signalling. We conclude that MKP-3/Pyst1 expression is mediated by ERK activation and that negative feedback control predominates in limiting the extent of FGF-induced ERK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号